litellm-mirror/litellm/tests/test_exceptions.py
2023-09-09 15:55:38 -07:00

155 lines
5.9 KiB
Python

from openai.error import AuthenticationError, InvalidRequestError, RateLimitError, OpenAIError
import os
import sys
import traceback
import subprocess
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm import (
embedding,
completion,
# AuthenticationError,
# InvalidRequestError,
ContextWindowExceededError,
# RateLimitError,
# ServiceUnavailableError,
# OpenAIError,
)
from concurrent.futures import ThreadPoolExecutor
import pytest
litellm.vertex_project = "pathrise-convert-1606954137718"
litellm.vertex_location = "us-central1"
# litellm.failure_callback = ["sentry"]
#### What this tests ####
# This tests exception mapping -> trigger an exception from an llm provider -> assert if output is of the expected type
# 5 providers -> OpenAI, Azure, Anthropic, Cohere, Replicate
# 3 main types of exceptions -> - Rate Limit Errors, Context Window Errors, Auth errors (incorrect/rotated key, etc.)
# Approach: Run each model through the test -> assert if the correct error (always the same one) is triggered
models = ["gpt-3.5-turbo"]
test_model = "claude-instant-1"
# Test 1: Context Window Errors
@pytest.mark.parametrize("model", models)
def test_context_window(model):
sample_text = "how does a court case get to the Supreme Court?" * 1000
messages = [{"content": sample_text, "role": "user"}]
with pytest.raises(ContextWindowExceededError):
completion(model=model, messages=messages)
# Test 2: InvalidAuth Errors
@pytest.mark.parametrize("model", models)
def invalid_auth(model): # set the model key to an invalid key, depending on the model
messages = [{"content": "Hello, how are you?", "role": "user"}]
temporary_key = None
try:
if model == "gpt-3.5-turbo":
temporary_key = os.environ["OPENAI_API_KEY"]
os.environ["OPENAI_API_KEY"] = "bad-key"
elif model == "chatgpt-test":
temporary_key = os.environ["AZURE_API_KEY"]
os.environ["AZURE_API_KEY"] = "bad-key"
elif model == "claude-instant-1":
temporary_key = os.environ["ANTHROPIC_API_KEY"]
os.environ["ANTHROPIC_API_KEY"] = "bad-key"
elif model == "command-nightly":
temporary_key = os.environ["COHERE_API_KEY"]
os.environ["COHERE_API_KEY"] = "bad-key"
elif "j2" in model:
temporary_key = os.environ["AI21_API_KEY"]
os.environ["AI21_API_KEY"] = "bad-key"
elif "togethercomputer" in model:
temporary_key = os.environ["TOGETHERAI_API_KEY"]
os.environ["TOGETHERAI_API_KEY"] = "84060c79880fc49df126d3e87b53f8a463ff6e1c6d27fe64207cde25cdfcd1f24a"
elif model in litellm.openrouter_models:
temporary_key = os.environ["OPENROUTER_API_KEY"]
os.environ["OPENROUTER_API_KEY"] = "bad-key"
elif (
model
== "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
):
temporary_key = os.environ["REPLICATE_API_KEY"]
os.environ["REPLICATE_API_KEY"] = "bad-key"
print(f"model: {model}")
response = completion(
model=model, messages=messages
)
print(f"response: {response}")
except AuthenticationError as e:
print(f"AuthenticationError Caught Exception - {e.llm_provider}")
except (
OpenAIError
): # is at least an openai error -> in case of random model errors - e.g. overloaded server
print(f"OpenAIError Caught Exception - {e}")
except Exception as e:
print(type(e))
print(type(AuthenticationError))
print(e.__class__.__name__)
print(f"Uncaught Exception - {e}")
pytest.fail(f"Error occurred: {e}")
if temporary_key != None: # reset the key
if model == "gpt-3.5-turbo":
os.environ["OPENAI_API_KEY"] = temporary_key
elif model == "chatgpt-test":
os.environ["AZURE_API_KEY"] = temporary_key
azure = True
elif model == "claude-instant-1":
os.environ["ANTHROPIC_API_KEY"] = temporary_key
elif model == "command-nightly":
os.environ["COHERE_API_KEY"] = temporary_key
elif (
model
== "replicate/llama-2-70b-chat:2c1608e18606fad2812020dc541930f2d0495ce32eee50074220b87300bc16e1"
):
os.environ["REPLICATE_API_KEY"] = temporary_key
elif "j2" in model:
os.environ["AI21_API_KEY"] = temporary_key
elif ("togethercomputer" in model):
os.environ["TOGETHERAI_API_KEY"] = temporary_key
return
# Test 3: Rate Limit Errors
# def test_model_call(model):
# try:
# sample_text = "how does a court case get to the Supreme Court?"
# messages = [{ "content": sample_text,"role": "user"}]
# print(f"model: {model}")
# response = completion(model=model, messages=messages)
# except RateLimitError:
# return True
# except OpenAIError: # is at least an openai error -> in case of random model errors - e.g. overloaded server
# return True
# except Exception as e:
# print(f"Uncaught Exception {model}: {type(e).__name__} - {e}")
# traceback.print_exc()
# pass
# return False
# # Repeat each model 500 times
# extended_models = [model for model in models for _ in range(250)]
# def worker(model):
# return test_model_call(model)
# # Create a dictionary to store the results
# counts = {True: 0, False: 0}
# # Use Thread Pool Executor
# with ThreadPoolExecutor(max_workers=500) as executor:
# # Use map to start the operation in thread pool
# results = executor.map(worker, extended_models)
# # Iterate over results and count True/False
# for result in results:
# counts[result] += 1
# accuracy_score = counts[True]/(counts[True] + counts[False])
# print(f"accuracy_score: {accuracy_score}")