litellm-mirror/tests/local_testing/test_audio_speech.py
Krish Dholakia a42f008cd0 Litellm dev 12 12 2024 (#7203)
* fix(azure/): support passing headers to azure openai endpoints

Fixes https://github.com/BerriAI/litellm/issues/6217

* fix(utils.py): move default tokenizer to just openai

hf tokenizer makes network calls when trying to get the tokenizer - this slows down execution time calls

* fix(router.py): fix pattern matching router - add generic "*" to it as well

Fixes issue where generic "*" model access group wouldn't show up

* fix(pattern_match_deployments.py): match to more specific pattern

match to more specific pattern

allows setting generic wildcard model access group and excluding specific models more easily

* fix(proxy_server.py): fix _delete_deployment to handle base case where db_model list is empty

don't delete all router models  b/c of empty list

Fixes https://github.com/BerriAI/litellm/issues/7196

* fix(anthropic/): fix handling response_format for anthropic messages with anthropic api

* fix(fireworks_ai/): support passing response_format + tool call in same message

Addresses https://github.com/BerriAI/litellm/issues/7135

* Revert "fix(fireworks_ai/): support passing response_format + tool call in same message"

This reverts commit 6a30dc6929.

* test: fix test

* fix(replicate/): fix replicate default retry/polling logic

* test: add unit testing for router pattern matching

* test: update test to use default oai tokenizer

* test: mark flaky test

* test: skip flaky test
2024-12-13 08:54:03 -08:00

269 lines
7.6 KiB
Python

# What is this?
## unit tests for openai tts endpoint
import asyncio
import os
import random
import sys
import time
import traceback
import uuid
from dotenv import load_dotenv
load_dotenv()
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from pathlib import Path
from unittest.mock import AsyncMock, MagicMock, patch
import openai
import pytest
import litellm
@pytest.mark.parametrize(
"sync_mode",
[True, False],
)
@pytest.mark.parametrize(
"model, api_key, api_base",
[
(
"azure/azure-tts",
os.getenv("AZURE_SWEDEN_API_KEY"),
os.getenv("AZURE_SWEDEN_API_BASE"),
),
("openai/tts-1", os.getenv("OPENAI_API_KEY"), None),
],
) # ,
@pytest.mark.asyncio
@pytest.mark.flaky(retries=3, delay=1)
async def test_audio_speech_litellm(sync_mode, model, api_base, api_key):
speech_file_path = Path(__file__).parent / "speech.mp3"
if sync_mode:
response = litellm.speech(
model=model,
voice="alloy",
input="the quick brown fox jumped over the lazy dogs",
api_base=api_base,
api_key=api_key,
organization=None,
project=None,
max_retries=1,
timeout=600,
client=None,
optional_params={},
)
from litellm.llms.openai.openai import HttpxBinaryResponseContent
assert isinstance(response, HttpxBinaryResponseContent)
else:
response = await litellm.aspeech(
model=model,
voice="alloy",
input="the quick brown fox jumped over the lazy dogs",
api_base=api_base,
api_key=api_key,
organization=None,
project=None,
max_retries=1,
timeout=600,
client=None,
optional_params={},
)
from litellm.llms.openai.openai import HttpxBinaryResponseContent
assert isinstance(response, HttpxBinaryResponseContent)
@pytest.mark.parametrize(
"sync_mode",
[False, True],
)
@pytest.mark.skip(reason="local only test - we run testing using MockRequests below")
@pytest.mark.asyncio
@pytest.mark.flaky(retries=3, delay=1)
async def test_audio_speech_litellm_vertex(sync_mode):
litellm.set_verbose = True
speech_file_path = Path(__file__).parent / "speech_vertex.mp3"
model = "vertex_ai/test"
if sync_mode:
response = litellm.speech(
model="vertex_ai/test",
input="hello what llm guardrail do you have",
)
response.stream_to_file(speech_file_path)
else:
response = await litellm.aspeech(
model="vertex_ai/",
input="async hello what llm guardrail do you have",
)
from types import SimpleNamespace
from litellm.llms.openai.openai import HttpxBinaryResponseContent
response.stream_to_file(speech_file_path)
@pytest.mark.flaky(retries=6, delay=2)
@pytest.mark.asyncio
async def test_speech_litellm_vertex_async():
# Mock the response
mock_response = AsyncMock()
def return_val():
return {
"audioContent": "dGVzdCByZXNwb25zZQ==",
}
mock_response.json = return_val
mock_response.status_code = 200
# Set up the mock for asynchronous calls
with patch(
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
new_callable=AsyncMock,
) as mock_async_post:
mock_async_post.return_value = mock_response
model = "vertex_ai/test"
response = await litellm.aspeech(
model=model,
input="async hello what llm guardrail do you have",
)
# Assert asynchronous call
mock_async_post.assert_called_once()
_, kwargs = mock_async_post.call_args
print("call args", kwargs)
assert kwargs["url"] == "https://texttospeech.googleapis.com/v1/text:synthesize"
assert "x-goog-user-project" in kwargs["headers"]
assert kwargs["headers"]["Authorization"] is not None
assert kwargs["json"] == {
"input": {"text": "async hello what llm guardrail do you have"},
"voice": {"languageCode": "en-US", "name": "en-US-Studio-O"},
"audioConfig": {"audioEncoding": "LINEAR16", "speakingRate": "1"},
}
@pytest.mark.asyncio
async def test_speech_litellm_vertex_async_with_voice():
# Mock the response
mock_response = AsyncMock()
def return_val():
return {
"audioContent": "dGVzdCByZXNwb25zZQ==",
}
mock_response.json = return_val
mock_response.status_code = 200
# Set up the mock for asynchronous calls
with patch(
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
new_callable=AsyncMock,
) as mock_async_post:
mock_async_post.return_value = mock_response
model = "vertex_ai/test"
response = await litellm.aspeech(
model=model,
input="async hello what llm guardrail do you have",
voice={
"languageCode": "en-UK",
"name": "en-UK-Studio-O",
},
audioConfig={
"audioEncoding": "LINEAR22",
"speakingRate": "10",
},
)
# Assert asynchronous call
mock_async_post.assert_called_once()
_, kwargs = mock_async_post.call_args
print("call args", kwargs)
assert kwargs["url"] == "https://texttospeech.googleapis.com/v1/text:synthesize"
assert "x-goog-user-project" in kwargs["headers"]
assert kwargs["headers"]["Authorization"] is not None
assert kwargs["json"] == {
"input": {"text": "async hello what llm guardrail do you have"},
"voice": {"languageCode": "en-UK", "name": "en-UK-Studio-O"},
"audioConfig": {"audioEncoding": "LINEAR22", "speakingRate": "10"},
}
@pytest.mark.asyncio
async def test_speech_litellm_vertex_async_with_voice_ssml():
# Mock the response
mock_response = AsyncMock()
def return_val():
return {
"audioContent": "dGVzdCByZXNwb25zZQ==",
}
mock_response.json = return_val
mock_response.status_code = 200
ssml = """
<speak>
<p>Hello, world!</p>
<p>This is a test of the <break strength="medium" /> text-to-speech API.</p>
</speak>
"""
# Set up the mock for asynchronous calls
with patch(
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
new_callable=AsyncMock,
) as mock_async_post:
mock_async_post.return_value = mock_response
model = "vertex_ai/test"
response = await litellm.aspeech(
input=ssml,
model=model,
voice={
"languageCode": "en-UK",
"name": "en-UK-Studio-O",
},
audioConfig={
"audioEncoding": "LINEAR22",
"speakingRate": "10",
},
)
# Assert asynchronous call
mock_async_post.assert_called_once()
_, kwargs = mock_async_post.call_args
print("call args", kwargs)
assert kwargs["url"] == "https://texttospeech.googleapis.com/v1/text:synthesize"
assert "x-goog-user-project" in kwargs["headers"]
assert kwargs["headers"]["Authorization"] is not None
assert kwargs["json"] == {
"input": {"ssml": ssml},
"voice": {"languageCode": "en-UK", "name": "en-UK-Studio-O"},
"audioConfig": {"audioEncoding": "LINEAR22", "speakingRate": "10"},
}