mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
99 lines
No EOL
4.5 KiB
Python
99 lines
No EOL
4.5 KiB
Python
import os, json
|
|
from enum import Enum
|
|
import requests
|
|
from litellm import logging
|
|
import time
|
|
from typing import Callable
|
|
|
|
class AnthropicConstants(Enum):
|
|
HUMAN_PROMPT = "\n\nHuman:"
|
|
AI_PROMPT = "\n\nAssistant:"
|
|
|
|
class AnthropicError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
|
|
class AnthropicLLM:
|
|
|
|
def __init__(self, encoding, default_max_tokens_to_sample, api_key=None):
|
|
self.encoding = encoding
|
|
self.default_max_tokens_to_sample = default_max_tokens_to_sample
|
|
self.completion_url = "https://api.anthropic.com/v1/complete"
|
|
self.validate_environment(api_key=api_key)
|
|
|
|
def validate_environment(self, api_key): # set up the environment required to run the model
|
|
# set the api key
|
|
try:
|
|
self.api_key = os.getenv("ANTHROPIC_API_KEY") if "ANTHROPIC_API_KEY" in os.environ else api_key
|
|
if self.api_key == None:
|
|
raise Exception
|
|
|
|
self.headers = {
|
|
"accept": "application/json",
|
|
"anthropic-version": "2023-06-01",
|
|
"content-type": "application/json",
|
|
"x-api-key": self.api_key
|
|
}
|
|
|
|
except:
|
|
raise ValueError("Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params")
|
|
pass
|
|
|
|
def completion(self, model: str, messages: list, model_response: dict, print_verbose: Callable, optional_params=None, litellm_params=None, logger_fn=None): # logic for parsing in - calling - parsing out model completion calls
|
|
model = model
|
|
prompt = f"{AnthropicConstants.HUMAN_PROMPT.value}"
|
|
for message in messages:
|
|
if "role" in message:
|
|
if message["role"] == "user":
|
|
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
|
|
else:
|
|
prompt += f"{AnthropicConstants.AI_PROMPT.value}{message['content']}"
|
|
else:
|
|
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
|
|
prompt += f"{AnthropicConstants.AI_PROMPT.value}"
|
|
if "max_tokens" in optional_params and optional_params["max_tokens"] != float('inf'):
|
|
max_tokens = optional_params["max_tokens"]
|
|
else:
|
|
max_tokens = self.default_max_tokens_to_sample
|
|
data = {
|
|
"model": model,
|
|
"prompt": prompt,
|
|
"max_tokens_to_sample": max_tokens,
|
|
**optional_params
|
|
}
|
|
|
|
## LOGGING
|
|
logging(model=model, input=prompt, additional_args={"litellm_params": litellm_params, "optional_params": optional_params}, logger_fn=logger_fn)
|
|
## COMPLETION CALL
|
|
response = requests.post(self.completion_url, headers=self.headers, data=json.dumps(data))
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
return response.iter_lines()
|
|
else:
|
|
## LOGGING
|
|
logging(model=model, input=prompt, additional_args={"litellm_params": litellm_params, "optional_params": optional_params, "original_response": response.text}, logger_fn=logger_fn)
|
|
print_verbose(f"raw model_response: {response.text}")
|
|
## RESPONSE OBJECT
|
|
completion_response = response.json()
|
|
print(f"completion_response: {completion_response}")
|
|
if "error" in completion_response:
|
|
raise AnthropicError(message=completion_response["error"], status_code=response.status_code)
|
|
else:
|
|
model_response["choices"][0]["message"]["content"] = completion_response["completion"]
|
|
|
|
## CALCULATING USAGE
|
|
prompt_tokens = len(self.encoding.encode(prompt)) ##[TODO] use the anthropic tokenizer here
|
|
completion_tokens = len(self.encoding.encode(model_response["choices"][0]["message"]["content"])) ##[TODO] use the anthropic tokenizer here
|
|
|
|
|
|
model_response["created"] = time.time()
|
|
model_response["model"] = model
|
|
model_response["usage"] = {
|
|
"prompt_tokens": prompt_tokens,
|
|
"completion_tokens": completion_tokens,
|
|
"total_tokens": prompt_tokens + completion_tokens
|
|
}
|
|
return model_response
|
|
|
|
def embedding(): # logic for parsing in - calling - parsing out model embedding calls
|
|
pass |