mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
* feat(fireworks_ai/chat): handle tool calling with fireworks ai correctly Fixes https://github.com/BerriAI/litellm/issues/7209 * fix(utils.py): handle none type in message * fix: fix model name in test * fix(utils.py): fix validate check for openai messages * fix: fix model returned * fix(main.py): fix text completion routing * test: update testing * test: skip test - cohere having RBAC issues
380 lines
14 KiB
Python
380 lines
14 KiB
Python
import json
|
|
import uuid
|
|
from typing import Any, List, Literal, Optional, Tuple, Union, cast
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm.constants import RESPONSE_FORMAT_TOOL_NAME
|
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
|
from litellm.litellm_core_utils.llm_response_utils.get_headers import (
|
|
get_response_headers,
|
|
)
|
|
from litellm.secret_managers.main import get_secret_str
|
|
from litellm.types.llms.openai import (
|
|
AllMessageValues,
|
|
ChatCompletionImageObject,
|
|
ChatCompletionToolParam,
|
|
OpenAIChatCompletionToolParam,
|
|
)
|
|
from litellm.types.utils import (
|
|
ChatCompletionMessageToolCall,
|
|
Choices,
|
|
Function,
|
|
Message,
|
|
ModelResponse,
|
|
ProviderSpecificModelInfo,
|
|
)
|
|
|
|
from ...openai.chat.gpt_transformation import OpenAIGPTConfig
|
|
from ..common_utils import FireworksAIException
|
|
|
|
|
|
class FireworksAIConfig(OpenAIGPTConfig):
|
|
"""
|
|
Reference: https://docs.fireworks.ai/api-reference/post-chatcompletions
|
|
|
|
The class `FireworksAIConfig` provides configuration for the Fireworks's Chat Completions API interface. Below are the parameters:
|
|
"""
|
|
|
|
tools: Optional[list] = None
|
|
tool_choice: Optional[Union[str, dict]] = None
|
|
max_tokens: Optional[int] = None
|
|
temperature: Optional[int] = None
|
|
top_p: Optional[int] = None
|
|
top_k: Optional[int] = None
|
|
frequency_penalty: Optional[int] = None
|
|
presence_penalty: Optional[int] = None
|
|
n: Optional[int] = None
|
|
stop: Optional[Union[str, list]] = None
|
|
response_format: Optional[dict] = None
|
|
user: Optional[str] = None
|
|
logprobs: Optional[int] = None
|
|
|
|
# Non OpenAI parameters - Fireworks AI only params
|
|
prompt_truncate_length: Optional[int] = None
|
|
context_length_exceeded_behavior: Optional[Literal["error", "truncate"]] = None
|
|
|
|
def __init__(
|
|
self,
|
|
tools: Optional[list] = None,
|
|
tool_choice: Optional[Union[str, dict]] = None,
|
|
max_tokens: Optional[int] = None,
|
|
temperature: Optional[int] = None,
|
|
top_p: Optional[int] = None,
|
|
top_k: Optional[int] = None,
|
|
frequency_penalty: Optional[int] = None,
|
|
presence_penalty: Optional[int] = None,
|
|
n: Optional[int] = None,
|
|
stop: Optional[Union[str, list]] = None,
|
|
response_format: Optional[dict] = None,
|
|
user: Optional[str] = None,
|
|
logprobs: Optional[int] = None,
|
|
prompt_truncate_length: Optional[int] = None,
|
|
context_length_exceeded_behavior: Optional[Literal["error", "truncate"]] = None,
|
|
) -> None:
|
|
locals_ = locals().copy()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return super().get_config()
|
|
|
|
def get_supported_openai_params(self, model: str):
|
|
return [
|
|
"stream",
|
|
"tools",
|
|
"tool_choice",
|
|
"max_completion_tokens",
|
|
"max_tokens",
|
|
"temperature",
|
|
"top_p",
|
|
"top_k",
|
|
"frequency_penalty",
|
|
"presence_penalty",
|
|
"n",
|
|
"stop",
|
|
"response_format",
|
|
"user",
|
|
"logprobs",
|
|
"prompt_truncate_length",
|
|
"context_length_exceeded_behavior",
|
|
]
|
|
|
|
def map_openai_params(
|
|
self,
|
|
non_default_params: dict,
|
|
optional_params: dict,
|
|
model: str,
|
|
drop_params: bool,
|
|
) -> dict:
|
|
supported_openai_params = self.get_supported_openai_params(model=model)
|
|
is_tools_set = any(
|
|
param == "tools" and value is not None
|
|
for param, value in non_default_params.items()
|
|
)
|
|
|
|
for param, value in non_default_params.items():
|
|
if param == "tool_choice":
|
|
if value == "required":
|
|
# relevant issue: https://github.com/BerriAI/litellm/issues/4416
|
|
optional_params["tool_choice"] = "any"
|
|
else:
|
|
# pass through the value of tool choice
|
|
optional_params["tool_choice"] = value
|
|
elif param == "response_format":
|
|
if (
|
|
is_tools_set
|
|
): # fireworks ai doesn't support tools and response_format together
|
|
optional_params = self._add_response_format_to_tools(
|
|
optional_params=optional_params,
|
|
value=value,
|
|
is_response_format_supported=False,
|
|
enforce_tool_choice=False, # tools and response_format are both set, don't enforce tool_choice
|
|
)
|
|
elif "json_schema" in value:
|
|
optional_params["response_format"] = {
|
|
"type": "json_object",
|
|
"schema": value["json_schema"]["schema"],
|
|
}
|
|
else:
|
|
optional_params["response_format"] = value
|
|
elif param == "max_completion_tokens":
|
|
optional_params["max_tokens"] = value
|
|
elif param in supported_openai_params:
|
|
if value is not None:
|
|
optional_params[param] = value
|
|
|
|
return optional_params
|
|
|
|
def _add_transform_inline_image_block(
|
|
self,
|
|
content: ChatCompletionImageObject,
|
|
model: str,
|
|
disable_add_transform_inline_image_block: Optional[bool],
|
|
) -> ChatCompletionImageObject:
|
|
"""
|
|
Add transform_inline to the image_url (allows non-vision models to parse documents/images/etc.)
|
|
- ignore if model is a vision model
|
|
- ignore if user has disabled this feature
|
|
"""
|
|
if (
|
|
"vision" in model or disable_add_transform_inline_image_block
|
|
): # allow user to toggle this feature.
|
|
return content
|
|
if isinstance(content["image_url"], str):
|
|
content["image_url"] = f"{content['image_url']}#transform=inline"
|
|
elif isinstance(content["image_url"], dict):
|
|
content["image_url"][
|
|
"url"
|
|
] = f"{content['image_url']['url']}#transform=inline"
|
|
return content
|
|
|
|
def _transform_tools(
|
|
self, tools: List[OpenAIChatCompletionToolParam]
|
|
) -> List[OpenAIChatCompletionToolParam]:
|
|
for tool in tools:
|
|
if tool.get("type") == "function":
|
|
tool["function"].pop("strict", None)
|
|
return tools
|
|
|
|
def _transform_messages_helper(
|
|
self, messages: List[AllMessageValues], model: str, litellm_params: dict
|
|
) -> List[AllMessageValues]:
|
|
"""
|
|
Add 'transform=inline' to the url of the image_url
|
|
"""
|
|
disable_add_transform_inline_image_block = cast(
|
|
Optional[bool],
|
|
litellm_params.get("disable_add_transform_inline_image_block")
|
|
or litellm.disable_add_transform_inline_image_block,
|
|
)
|
|
for message in messages:
|
|
if message["role"] == "user":
|
|
_message_content = message.get("content")
|
|
if _message_content is not None and isinstance(_message_content, list):
|
|
for content in _message_content:
|
|
if content["type"] == "image_url":
|
|
content = self._add_transform_inline_image_block(
|
|
content=content,
|
|
model=model,
|
|
disable_add_transform_inline_image_block=disable_add_transform_inline_image_block,
|
|
)
|
|
return messages
|
|
|
|
def get_provider_info(self, model: str) -> ProviderSpecificModelInfo:
|
|
provider_specific_model_info = ProviderSpecificModelInfo(
|
|
supports_function_calling=True,
|
|
supports_prompt_caching=True, # https://docs.fireworks.ai/guides/prompt-caching
|
|
supports_pdf_input=True, # via document inlining
|
|
supports_vision=True, # via document inlining
|
|
)
|
|
return provider_specific_model_info
|
|
|
|
def transform_request(
|
|
self,
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
headers: dict,
|
|
) -> dict:
|
|
if not model.startswith("accounts/"):
|
|
model = f"accounts/fireworks/models/{model}"
|
|
messages = self._transform_messages_helper(
|
|
messages=messages, model=model, litellm_params=litellm_params
|
|
)
|
|
if "tools" in optional_params and optional_params["tools"] is not None:
|
|
tools = self._transform_tools(tools=optional_params["tools"])
|
|
optional_params["tools"] = tools
|
|
return super().transform_request(
|
|
model=model,
|
|
messages=messages,
|
|
optional_params=optional_params,
|
|
litellm_params=litellm_params,
|
|
headers=headers,
|
|
)
|
|
|
|
def _handle_message_content_with_tool_calls(
|
|
self,
|
|
message: Message,
|
|
tool_calls: Optional[List[ChatCompletionToolParam]],
|
|
) -> Message:
|
|
"""
|
|
Fireworks AI sends tool calls in the content field instead of tool_calls
|
|
|
|
Relevant Issue: https://github.com/BerriAI/litellm/issues/7209#issuecomment-2813208780
|
|
"""
|
|
if (
|
|
tool_calls is not None
|
|
and message.content is not None
|
|
and message.tool_calls is None
|
|
):
|
|
try:
|
|
function = Function(**json.loads(message.content))
|
|
if function.name != RESPONSE_FORMAT_TOOL_NAME and function.name in [
|
|
tool["function"]["name"] for tool in tool_calls
|
|
]:
|
|
tool_call = ChatCompletionMessageToolCall(
|
|
function=function, id=str(uuid.uuid4()), type="function"
|
|
)
|
|
message.tool_calls = [tool_call]
|
|
|
|
message.content = None
|
|
except Exception:
|
|
pass
|
|
|
|
return message
|
|
|
|
def transform_response(
|
|
self,
|
|
model: str,
|
|
raw_response: httpx.Response,
|
|
model_response: ModelResponse,
|
|
logging_obj: LiteLLMLoggingObj,
|
|
request_data: dict,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
encoding: Any,
|
|
api_key: Optional[str] = None,
|
|
json_mode: Optional[bool] = None,
|
|
) -> ModelResponse:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
original_response=raw_response.text,
|
|
additional_args={"complete_input_dict": request_data},
|
|
)
|
|
|
|
## RESPONSE OBJECT
|
|
try:
|
|
completion_response = raw_response.json()
|
|
except Exception as e:
|
|
response_headers = getattr(raw_response, "headers", None)
|
|
raise FireworksAIException(
|
|
message="Unable to get json response - {}, Original Response: {}".format(
|
|
str(e), raw_response.text
|
|
),
|
|
status_code=raw_response.status_code,
|
|
headers=response_headers,
|
|
)
|
|
|
|
raw_response_headers = dict(raw_response.headers)
|
|
|
|
additional_headers = get_response_headers(raw_response_headers)
|
|
|
|
response = ModelResponse(**completion_response)
|
|
|
|
if response.model is not None:
|
|
response.model = "fireworks_ai/" + response.model
|
|
|
|
## FIREWORKS AI sends tool calls in the content field instead of tool_calls
|
|
for choice in response.choices:
|
|
cast(
|
|
Choices, choice
|
|
).message = self._handle_message_content_with_tool_calls(
|
|
message=cast(Choices, choice).message,
|
|
tool_calls=optional_params.get("tools", None),
|
|
)
|
|
|
|
response._hidden_params = {"additional_headers": additional_headers}
|
|
|
|
return response
|
|
|
|
def _get_openai_compatible_provider_info(
|
|
self, api_base: Optional[str], api_key: Optional[str]
|
|
) -> Tuple[Optional[str], Optional[str]]:
|
|
api_base = (
|
|
api_base
|
|
or get_secret_str("FIREWORKS_API_BASE")
|
|
or "https://api.fireworks.ai/inference/v1"
|
|
) # type: ignore
|
|
dynamic_api_key = api_key or (
|
|
get_secret_str("FIREWORKS_API_KEY")
|
|
or get_secret_str("FIREWORKS_AI_API_KEY")
|
|
or get_secret_str("FIREWORKSAI_API_KEY")
|
|
or get_secret_str("FIREWORKS_AI_TOKEN")
|
|
)
|
|
return api_base, dynamic_api_key
|
|
|
|
def get_models(self, api_key: Optional[str] = None, api_base: Optional[str] = None):
|
|
api_base, api_key = self._get_openai_compatible_provider_info(
|
|
api_base=api_base, api_key=api_key
|
|
)
|
|
if api_base is None or api_key is None:
|
|
raise ValueError(
|
|
"FIREWORKS_API_BASE or FIREWORKS_API_KEY is not set. Please set the environment variable, to query Fireworks AI's `/models` endpoint."
|
|
)
|
|
|
|
account_id = get_secret_str("FIREWORKS_ACCOUNT_ID")
|
|
if account_id is None:
|
|
raise ValueError(
|
|
"FIREWORKS_ACCOUNT_ID is not set. Please set the environment variable, to query Fireworks AI's `/models` endpoint."
|
|
)
|
|
|
|
response = litellm.module_level_client.get(
|
|
url=f"{api_base}/v1/accounts/{account_id}/models",
|
|
headers={"Authorization": f"Bearer {api_key}"},
|
|
)
|
|
|
|
if response.status_code != 200:
|
|
raise ValueError(
|
|
f"Failed to fetch models from Fireworks AI. Status code: {response.status_code}, Response: {response.json()}"
|
|
)
|
|
|
|
models = response.json()["models"]
|
|
|
|
return ["fireworks_ai/" + model["name"] for model in models]
|
|
|
|
@staticmethod
|
|
def get_api_key(api_key: Optional[str] = None) -> Optional[str]:
|
|
return api_key or (
|
|
get_secret_str("FIREWORKS_API_KEY")
|
|
or get_secret_str("FIREWORKS_AI_API_KEY")
|
|
or get_secret_str("FIREWORKSAI_API_KEY")
|
|
or get_secret_str("FIREWORKS_AI_TOKEN")
|
|
)
|