litellm-mirror/litellm/llms/OpenAI/o1_reasoning.py
2024-09-12 14:09:13 -07:00

103 lines
3.1 KiB
Python

"""
Support for o1 model family
https://platform.openai.com/docs/guides/reasoning
Translations handled by LiteLLM:
- modalities: image => drop param (if user opts in to dropping param)
- role: system ==> translate to role 'user'
- streaming => faked by LiteLLM
- Tools, response_format => drop param (if user opts in to dropping param)
- Logprobs => drop param (if user opts in to dropping param)
"""
import types
from typing import Any, List, Optional, Union
import litellm
from .openai import OpenAIConfig
class OpenAIO1Config(OpenAIConfig):
"""
Reference: https://platform.openai.com/docs/guides/reasoning
"""
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self, model: str) -> list:
"""
Get the supported OpenAI params for the given model
"""
all_openai_params = litellm.OpenAIConfig().get_supported_openai_params(
model="gpt-4o"
)
non_supported_params = [
"logprobs",
"tools",
"tool_choice",
"parallel_tool_calls",
"function_call",
"functions",
]
return [
param for param in all_openai_params if param not in non_supported_params
]
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_completion_tokens"] = value
return optional_params
def is_model_o1_reasoning_model(self, model: str) -> bool:
if "o1" in model:
return True
return False
def o1_prompt_factory(self, messages: List[Any]):
"""
Handles limitations of O-1 model family.
- modalities: image => drop param (if user opts in to dropping param)
- role: system ==> translate to role 'user'
"""
for message in messages:
if message["role"] == "system":
message["role"] = "user"
if isinstance(message["content"], list):
new_content = []
for content_item in message["content"]:
if content_item.get("type") == "image_url":
if litellm.drop_params is not True:
raise ValueError(
"Image content is not supported for O-1 models. Set litellm.drop_param to True to drop image content."
)
# If drop_param is True, we simply don't add the image content to new_content
else:
new_content.append(content_item)
message["content"] = new_content
return messages