mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
167 lines
6.4 KiB
Python
167 lines
6.4 KiB
Python
import os, types
|
|
import json
|
|
from enum import Enum
|
|
import requests
|
|
import time
|
|
from typing import Callable, Optional
|
|
from litellm.utils import ModelResponse, Usage
|
|
import litellm
|
|
import httpx
|
|
|
|
class VertexAIError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(method="POST", url="https://api.ai21.com/studio/v1/")
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
class VertexAIConfig():
|
|
"""
|
|
Reference: https://cloud.google.com/vertex-ai/docs/generative-ai/chat/test-chat-prompts
|
|
|
|
The class `VertexAIConfig` provides configuration for the VertexAI's API interface. Below are the parameters:
|
|
|
|
- `temperature` (float): This controls the degree of randomness in token selection.
|
|
|
|
- `max_output_tokens` (integer): This sets the limitation for the maximum amount of token in the text output. In this case, the default value is 256.
|
|
|
|
- `top_p` (float): The tokens are selected from the most probable to the least probable until the sum of their probabilities equals the `top_p` value. Default is 0.95.
|
|
|
|
- `top_k` (integer): The value of `top_k` determines how many of the most probable tokens are considered in the selection. For example, a `top_k` of 1 means the selected token is the most probable among all tokens. The default value is 40.
|
|
|
|
Note: Please make sure to modify the default parameters as required for your use case.
|
|
"""
|
|
temperature: Optional[float]=None
|
|
max_output_tokens: Optional[int]=None
|
|
top_p: Optional[float]=None
|
|
top_k: Optional[int]=None
|
|
|
|
def __init__(self,
|
|
temperature: Optional[float]=None,
|
|
max_output_tokens: Optional[int]=None,
|
|
top_p: Optional[float]=None,
|
|
top_k: Optional[int]=None) -> None:
|
|
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != 'self' and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {k: v for k, v in cls.__dict__.items()
|
|
if not k.startswith('__')
|
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
|
and v is not None}
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
logging_obj,
|
|
vertex_project=None,
|
|
vertex_location=None,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
):
|
|
try:
|
|
import vertexai
|
|
except:
|
|
raise Exception("vertexai import failed please run `pip install google-cloud-aiplatform`")
|
|
from vertexai.preview.language_models import ChatModel, CodeChatModel, InputOutputTextPair
|
|
from vertexai.language_models import TextGenerationModel, CodeGenerationModel
|
|
|
|
vertexai.init(
|
|
project=vertex_project, location=vertex_location
|
|
)
|
|
|
|
## Load Config
|
|
config = litellm.VertexAIConfig.get_config()
|
|
for k, v in config.items():
|
|
if k not in optional_params:
|
|
optional_params[k] = v
|
|
|
|
# vertexai does not use an API key, it looks for credentials.json in the environment
|
|
|
|
prompt = " ".join([message["content"] for message in messages])
|
|
|
|
mode = ""
|
|
if model in litellm.vertex_chat_models:
|
|
chat_model = ChatModel.from_pretrained(model)
|
|
mode = "chat"
|
|
elif model in litellm.vertex_text_models:
|
|
text_model = TextGenerationModel.from_pretrained(model)
|
|
mode = "text"
|
|
elif model in litellm.vertex_code_text_models:
|
|
text_model = CodeGenerationModel.from_pretrained(model)
|
|
mode = "text"
|
|
else: # vertex_code_chat_models
|
|
chat_model = CodeChatModel.from_pretrained(model)
|
|
mode = "chat"
|
|
|
|
if mode == "chat":
|
|
chat = chat_model.start_chat()
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(input=prompt, api_key=None, additional_args={"complete_input_dict": optional_params})
|
|
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
# NOTE: VertexAI does not accept stream=True as a param and raises an error,
|
|
# we handle this by removing 'stream' from optional params and sending the request
|
|
# after we get the response we add optional_params["stream"] = True, since main.py needs to know it's a streaming response to then transform it for the OpenAI format
|
|
optional_params.pop("stream", None) # vertex ai raises an error when passing stream in optional params
|
|
model_response = chat.send_message_streaming(prompt, **optional_params)
|
|
optional_params["stream"] = True
|
|
return model_response
|
|
|
|
completion_response = chat.send_message(prompt, **optional_params).text
|
|
elif mode == "text":
|
|
## LOGGING
|
|
logging_obj.pre_call(input=prompt, api_key=None)
|
|
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
optional_params.pop("stream", None) # See note above on handling streaming for vertex ai
|
|
model_response = text_model.predict_streaming(prompt, **optional_params)
|
|
optional_params["stream"] = True
|
|
return model_response
|
|
|
|
completion_response = text_model.predict(prompt, **optional_params).text
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt, api_key=None, original_response=completion_response
|
|
)
|
|
|
|
## RESPONSE OBJECT
|
|
if len(str(completion_response)) > 0:
|
|
model_response["choices"][0]["message"][
|
|
"content"
|
|
] = str(completion_response)
|
|
model_response["choices"][0]["message"]["content"] = str(completion_response)
|
|
model_response["created"] = time.time()
|
|
model_response["model"] = model
|
|
## CALCULATING USAGE
|
|
prompt_tokens = len(
|
|
encoding.encode(prompt)
|
|
)
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
|
)
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens
|
|
)
|
|
model_response.usage = usage
|
|
return model_response
|
|
|
|
|
|
def embedding():
|
|
# logic for parsing in - calling - parsing out model embedding calls
|
|
pass
|