litellm-mirror/litellm/llms/azure/common_utils.py
Marc Abramowitz 837a6948d8
Fix typo: Entrata -> Entra in code (#9922)
* Fix typo: Entrata -> Entra

* Fix a few more
2025-04-15 17:31:18 -07:00

438 lines
16 KiB
Python

import json
import os
from typing import Any, Callable, Dict, Optional, Union
import httpx
from openai import AsyncAzureOpenAI, AzureOpenAI
import litellm
from litellm._logging import verbose_logger
from litellm.caching.caching import DualCache
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.llms.openai.common_utils import BaseOpenAILLM
from litellm.secret_managers.get_azure_ad_token_provider import (
get_azure_ad_token_provider,
)
from litellm.secret_managers.main import get_secret_str
azure_ad_cache = DualCache()
class AzureOpenAIError(BaseLLMException):
def __init__(
self,
status_code,
message,
request: Optional[httpx.Request] = None,
response: Optional[httpx.Response] = None,
headers: Optional[Union[httpx.Headers, dict]] = None,
body: Optional[dict] = None,
):
super().__init__(
status_code=status_code,
message=message,
request=request,
response=response,
headers=headers,
body=body,
)
def process_azure_headers(headers: Union[httpx.Headers, dict]) -> dict:
openai_headers = {}
if "x-ratelimit-limit-requests" in headers:
openai_headers["x-ratelimit-limit-requests"] = headers[
"x-ratelimit-limit-requests"
]
if "x-ratelimit-remaining-requests" in headers:
openai_headers["x-ratelimit-remaining-requests"] = headers[
"x-ratelimit-remaining-requests"
]
if "x-ratelimit-limit-tokens" in headers:
openai_headers["x-ratelimit-limit-tokens"] = headers["x-ratelimit-limit-tokens"]
if "x-ratelimit-remaining-tokens" in headers:
openai_headers["x-ratelimit-remaining-tokens"] = headers[
"x-ratelimit-remaining-tokens"
]
llm_response_headers = {
"{}-{}".format("llm_provider", k): v for k, v in headers.items()
}
return {**llm_response_headers, **openai_headers}
def get_azure_ad_token_from_entra_id(
tenant_id: str,
client_id: str,
client_secret: str,
scope: str = "https://cognitiveservices.azure.com/.default",
) -> Callable[[], str]:
"""
Get Azure AD token provider from `client_id`, `client_secret`, and `tenant_id`
Args:
tenant_id: str
client_id: str
client_secret: str
scope: str
Returns:
callable that returns a bearer token.
"""
from azure.identity import ClientSecretCredential, get_bearer_token_provider
verbose_logger.debug("Getting Azure AD Token from Entra ID")
if tenant_id.startswith("os.environ/"):
_tenant_id = get_secret_str(tenant_id)
else:
_tenant_id = tenant_id
if client_id.startswith("os.environ/"):
_client_id = get_secret_str(client_id)
else:
_client_id = client_id
if client_secret.startswith("os.environ/"):
_client_secret = get_secret_str(client_secret)
else:
_client_secret = client_secret
verbose_logger.debug(
"tenant_id %s, client_id %s, client_secret %s",
_tenant_id,
_client_id,
_client_secret,
)
if _tenant_id is None or _client_id is None or _client_secret is None:
raise ValueError("tenant_id, client_id, and client_secret must be provided")
credential = ClientSecretCredential(_tenant_id, _client_id, _client_secret)
verbose_logger.debug("credential %s", credential)
token_provider = get_bearer_token_provider(credential, scope)
verbose_logger.debug("token_provider %s", token_provider)
return token_provider
def get_azure_ad_token_from_username_password(
client_id: str,
azure_username: str,
azure_password: str,
scope: str = "https://cognitiveservices.azure.com/.default",
) -> Callable[[], str]:
"""
Get Azure AD token provider from `client_id`, `azure_username`, and `azure_password`
Args:
client_id: str
azure_username: str
azure_password: str
scope: str
Returns:
callable that returns a bearer token.
"""
from azure.identity import UsernamePasswordCredential, get_bearer_token_provider
verbose_logger.debug(
"client_id %s, azure_username %s, azure_password %s",
client_id,
azure_username,
azure_password,
)
credential = UsernamePasswordCredential(
client_id=client_id,
username=azure_username,
password=azure_password,
)
verbose_logger.debug("credential %s", credential)
token_provider = get_bearer_token_provider(credential, scope)
verbose_logger.debug("token_provider %s", token_provider)
return token_provider
def get_azure_ad_token_from_oidc(azure_ad_token: str):
azure_client_id = os.getenv("AZURE_CLIENT_ID", None)
azure_tenant_id = os.getenv("AZURE_TENANT_ID", None)
azure_authority_host = os.getenv(
"AZURE_AUTHORITY_HOST", "https://login.microsoftonline.com"
)
if azure_client_id is None or azure_tenant_id is None:
raise AzureOpenAIError(
status_code=422,
message="AZURE_CLIENT_ID and AZURE_TENANT_ID must be set",
)
oidc_token = get_secret_str(azure_ad_token)
if oidc_token is None:
raise AzureOpenAIError(
status_code=401,
message="OIDC token could not be retrieved from secret manager.",
)
azure_ad_token_cache_key = json.dumps(
{
"azure_client_id": azure_client_id,
"azure_tenant_id": azure_tenant_id,
"azure_authority_host": azure_authority_host,
"oidc_token": oidc_token,
}
)
azure_ad_token_access_token = azure_ad_cache.get_cache(azure_ad_token_cache_key)
if azure_ad_token_access_token is not None:
return azure_ad_token_access_token
client = litellm.module_level_client
req_token = client.post(
f"{azure_authority_host}/{azure_tenant_id}/oauth2/v2.0/token",
data={
"client_id": azure_client_id,
"grant_type": "client_credentials",
"scope": "https://cognitiveservices.azure.com/.default",
"client_assertion_type": "urn:ietf:params:oauth:client-assertion-type:jwt-bearer",
"client_assertion": oidc_token,
},
)
if req_token.status_code != 200:
raise AzureOpenAIError(
status_code=req_token.status_code,
message=req_token.text,
)
azure_ad_token_json = req_token.json()
azure_ad_token_access_token = azure_ad_token_json.get("access_token", None)
azure_ad_token_expires_in = azure_ad_token_json.get("expires_in", None)
if azure_ad_token_access_token is None:
raise AzureOpenAIError(
status_code=422, message="Azure AD Token access_token not returned"
)
if azure_ad_token_expires_in is None:
raise AzureOpenAIError(
status_code=422, message="Azure AD Token expires_in not returned"
)
azure_ad_cache.set_cache(
key=azure_ad_token_cache_key,
value=azure_ad_token_access_token,
ttl=azure_ad_token_expires_in,
)
return azure_ad_token_access_token
def select_azure_base_url_or_endpoint(azure_client_params: dict):
azure_endpoint = azure_client_params.get("azure_endpoint", None)
if azure_endpoint is not None:
# see : https://github.com/openai/openai-python/blob/3d61ed42aba652b547029095a7eb269ad4e1e957/src/openai/lib/azure.py#L192
if "/openai/deployments" in azure_endpoint:
# this is base_url, not an azure_endpoint
azure_client_params["base_url"] = azure_endpoint
azure_client_params.pop("azure_endpoint")
return azure_client_params
class BaseAzureLLM(BaseOpenAILLM):
def get_azure_openai_client(
self,
api_key: Optional[str],
api_base: Optional[str],
api_version: Optional[str] = None,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
litellm_params: Optional[dict] = None,
_is_async: bool = False,
model: Optional[str] = None,
) -> Optional[Union[AzureOpenAI, AsyncAzureOpenAI]]:
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None
client_initialization_params: dict = locals()
if client is None:
cached_client = self.get_cached_openai_client(
client_initialization_params=client_initialization_params,
client_type="azure",
)
if cached_client:
if isinstance(cached_client, AzureOpenAI) or isinstance(
cached_client, AsyncAzureOpenAI
):
return cached_client
azure_client_params = self.initialize_azure_sdk_client(
litellm_params=litellm_params or {},
api_key=api_key,
api_base=api_base,
model_name=model,
api_version=api_version,
is_async=_is_async,
)
if _is_async is True:
openai_client = AsyncAzureOpenAI(**azure_client_params)
else:
openai_client = AzureOpenAI(**azure_client_params) # type: ignore
else:
openai_client = client
if api_version is not None and isinstance(
openai_client._custom_query, dict
):
# set api_version to version passed by user
openai_client._custom_query.setdefault("api-version", api_version)
# save client in-memory cache
self.set_cached_openai_client(
openai_client=openai_client,
client_initialization_params=client_initialization_params,
client_type="azure",
)
return openai_client
def initialize_azure_sdk_client(
self,
litellm_params: dict,
api_key: Optional[str],
api_base: Optional[str],
model_name: Optional[str],
api_version: Optional[str],
is_async: bool,
) -> dict:
azure_ad_token_provider: Optional[Callable[[], str]] = None
# If we have api_key, then we have higher priority
azure_ad_token = litellm_params.get("azure_ad_token")
tenant_id = litellm_params.get("tenant_id", os.getenv("AZURE_TENANT_ID"))
client_id = litellm_params.get("client_id", os.getenv("AZURE_CLIENT_ID"))
client_secret = litellm_params.get(
"client_secret", os.getenv("AZURE_CLIENT_SECRET")
)
azure_username = litellm_params.get(
"azure_username", os.getenv("AZURE_USERNAME")
)
azure_password = litellm_params.get(
"azure_password", os.getenv("AZURE_PASSWORD")
)
max_retries = litellm_params.get("max_retries")
timeout = litellm_params.get("timeout")
if not api_key and tenant_id and client_id and client_secret:
verbose_logger.debug(
"Using Azure AD Token Provider from Entra ID for Azure Auth"
)
azure_ad_token_provider = get_azure_ad_token_from_entra_id(
tenant_id=tenant_id,
client_id=client_id,
client_secret=client_secret,
)
if azure_username and azure_password and client_id:
verbose_logger.debug("Using Azure Username and Password for Azure Auth")
azure_ad_token_provider = get_azure_ad_token_from_username_password(
azure_username=azure_username,
azure_password=azure_password,
client_id=client_id,
)
if azure_ad_token is not None and azure_ad_token.startswith("oidc/"):
verbose_logger.debug("Using Azure OIDC Token for Azure Auth")
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
elif (
not api_key
and azure_ad_token_provider is None
and litellm.enable_azure_ad_token_refresh is True
):
verbose_logger.debug(
"Using Azure AD token provider based on Service Principal with Secret workflow for Azure Auth"
)
try:
azure_ad_token_provider = get_azure_ad_token_provider()
except ValueError:
verbose_logger.debug("Azure AD Token Provider could not be used.")
if api_version is None:
api_version = os.getenv(
"AZURE_API_VERSION", litellm.AZURE_DEFAULT_API_VERSION
)
_api_key = api_key
if _api_key is not None and isinstance(_api_key, str):
# only show first 5 chars of api_key
_api_key = _api_key[:8] + "*" * 15
verbose_logger.debug(
f"Initializing Azure OpenAI Client for {model_name}, Api Base: {str(api_base)}, Api Key:{_api_key}"
)
azure_client_params = {
"api_key": api_key,
"azure_endpoint": api_base,
"api_version": api_version,
"azure_ad_token": azure_ad_token,
"azure_ad_token_provider": azure_ad_token_provider,
}
# init http client + SSL Verification settings
if is_async is True:
azure_client_params["http_client"] = self._get_async_http_client()
else:
azure_client_params["http_client"] = self._get_sync_http_client()
if max_retries is not None:
azure_client_params["max_retries"] = max_retries
if timeout is not None:
azure_client_params["timeout"] = timeout
if azure_ad_token_provider is not None:
azure_client_params["azure_ad_token_provider"] = azure_ad_token_provider
# this decides if we should set azure_endpoint or base_url on Azure OpenAI Client
# required to support GPT-4 vision enhancements, since base_url needs to be set on Azure OpenAI Client
azure_client_params = select_azure_base_url_or_endpoint(
azure_client_params=azure_client_params
)
return azure_client_params
def _init_azure_client_for_cloudflare_ai_gateway(
self,
api_base: str,
model: str,
api_version: str,
max_retries: int,
timeout: Union[float, httpx.Timeout],
api_key: Optional[str],
azure_ad_token: Optional[str],
azure_ad_token_provider: Optional[Callable[[], str]],
acompletion: bool,
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
) -> Union[AzureOpenAI, AsyncAzureOpenAI]:
## build base url - assume api base includes resource name
if client is None:
if not api_base.endswith("/"):
api_base += "/"
api_base += f"{model}"
azure_client_params: Dict[str, Any] = {
"api_version": api_version,
"base_url": f"{api_base}",
"http_client": litellm.client_session,
"max_retries": max_retries,
"timeout": timeout,
}
if api_key is not None:
azure_client_params["api_key"] = api_key
elif azure_ad_token is not None:
if azure_ad_token.startswith("oidc/"):
azure_ad_token = get_azure_ad_token_from_oidc(azure_ad_token)
azure_client_params["azure_ad_token"] = azure_ad_token
if azure_ad_token_provider is not None:
azure_client_params["azure_ad_token_provider"] = azure_ad_token_provider
if acompletion is True:
client = AsyncAzureOpenAI(**azure_client_params) # type: ignore
else:
client = AzureOpenAI(**azure_client_params) # type: ignore
return client