mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* test: add initial e2e test * fix(vertex_ai/files): initial commit adding sync file create support * refactor: initial commit of vertex ai non-jsonl files reaching gcp endpoint * fix(vertex_ai/files/transformation.py): initial working commit of non-jsonl file call reaching backend endpoint * fix(vertex_ai/files/transformation.py): working e2e non-jsonl file upload * test: working e2e jsonl call * test: unit testing for jsonl file creation * fix(vertex_ai/transformation.py): reset file pointer after read allow multiple reads on same file object * fix: fix linting errors * fix: fix ruff linting errors * fix: fix import * fix: fix linting error * fix: fix linting error * fix(vertex_ai/files/transformation.py): fix linting error * test: update test * test: update tests * fix: fix linting errors * fix: fix test * fix: fix linting error
359 lines
No EOL
13 KiB
Python
359 lines
No EOL
13 KiB
Python
"""
|
|
Test HuggingFace LLM
|
|
"""
|
|
|
|
from re import M
|
|
|
|
import httpx
|
|
from base_llm_unit_tests import BaseLLMChatTest
|
|
import json
|
|
import os
|
|
import sys
|
|
from unittest.mock import patch, MagicMock, AsyncMock
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
|
|
import litellm
|
|
import pytest
|
|
from litellm.types.utils import ModelResponseStream, ModelResponse
|
|
from respx import MockRouter
|
|
|
|
MOCK_COMPLETION_RESPONSE = {
|
|
"id": "9115d3daeab10608",
|
|
"object": "chat.completion",
|
|
"created": 11111,
|
|
"model": "meta-llama/Meta-Llama-3-8B-Instruct",
|
|
"prompt": [],
|
|
"choices": [
|
|
{
|
|
"finish_reason": "stop",
|
|
"seed": 3629048360264764400,
|
|
"logprobs": None,
|
|
"index": 0,
|
|
"message": {
|
|
"role": "assistant",
|
|
"content": "This is a test response from the mocked HuggingFace API.",
|
|
"tool_calls": []
|
|
}
|
|
}
|
|
],
|
|
"usage": {
|
|
"prompt_tokens": 10,
|
|
"completion_tokens": 20,
|
|
"total_tokens": 30
|
|
}
|
|
}
|
|
|
|
MOCK_STREAMING_CHUNKS = [
|
|
{"id": "id1", "object": "chat.completion.chunk", "created": 1111,
|
|
"choices": [{"index": 0, "text": "Deep", "logprobs": None, "finish_reason": None, "seed": None,
|
|
"delta": {"token_id": 34564, "role": "assistant", "content": "Deep", "tool_calls": None}}],
|
|
"model": "meta-llama/Meta-Llama-3-8B-Instruct-Turbo", "usage": None},
|
|
|
|
{"id": "id2", "object": "chat.completion.chunk", "created": 1111,
|
|
"choices": [{"index": 0, "text": " learning", "logprobs": None, "finish_reason": None, "seed": None,
|
|
"delta": {"token_id": 6975, "role": "assistant", "content": " learning", "tool_calls": None}}],
|
|
"model": "meta-llama/Meta-Llama-3-8B-Instruct-Turbo", "usage": None},
|
|
|
|
{"id": "id3", "object": "chat.completion.chunk", "created": 1111,
|
|
"choices": [{"index": 0, "text": " is", "logprobs": None, "finish_reason": None, "seed": None,
|
|
"delta": {"token_id": 374, "role": "assistant", "content": " is", "tool_calls": None}}],
|
|
"model": "meta-llama/Meta-Llama-3-8B-Instruct-Turbo", "usage": None},
|
|
|
|
{"id": "sid4", "object": "chat.completion.chunk", "created": 1111,
|
|
"choices": [{"index": 0, "text": " response", "logprobs": None, "finish_reason": "length", "seed": 2853637492034609700,
|
|
"delta": {"token_id": 323, "role": "assistant", "content": " response", "tool_calls": None}}],
|
|
"model": "meta-llama/Meta-Llama-3-8B-Instruct-Turbo",
|
|
"usage": {"prompt_tokens": 26, "completion_tokens": 20, "total_tokens": 46}}
|
|
]
|
|
|
|
|
|
PROVIDER_MAPPING_RESPONSE = {
|
|
"fireworks-ai": {
|
|
"status": "live",
|
|
"providerId": "accounts/fireworks/models/llama-v3-8b-instruct",
|
|
"task": "conversational"
|
|
},
|
|
"together": {
|
|
"status": "live",
|
|
"providerId": "meta-llama/Meta-Llama-3-8B-Instruct-Turbo",
|
|
"task": "conversational"
|
|
},
|
|
"hf-inference": {
|
|
"status": "live",
|
|
"providerId": "meta-llama/Meta-Llama-3-8B-Instruct",
|
|
"task": "conversational"
|
|
},
|
|
}
|
|
|
|
@pytest.fixture
|
|
def mock_provider_mapping():
|
|
with patch("litellm.llms.huggingface.chat.transformation._fetch_inference_provider_mapping") as mock:
|
|
mock.return_value = PROVIDER_MAPPING_RESPONSE
|
|
yield mock
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def clear_lru_cache():
|
|
from litellm.llms.huggingface.common_utils import _fetch_inference_provider_mapping
|
|
|
|
_fetch_inference_provider_mapping.cache_clear()
|
|
yield
|
|
_fetch_inference_provider_mapping.cache_clear()
|
|
|
|
@pytest.fixture
|
|
def mock_http_handler():
|
|
"""Fixture to mock the HTTP handler"""
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post"
|
|
) as mock:
|
|
print(f"Creating mock HTTP handler: {mock}")
|
|
|
|
mock_response = MagicMock()
|
|
mock_response.raise_for_status.return_value = None
|
|
mock_response.status_code = 200
|
|
|
|
def mock_side_effect(*args, **kwargs):
|
|
if kwargs.get("stream", True):
|
|
mock_response.iter_lines.return_value = iter([
|
|
f"data: {json.dumps(chunk)}".encode('utf-8')
|
|
for chunk in MOCK_STREAMING_CHUNKS
|
|
] + [b'data: [DONE]'])
|
|
else:
|
|
mock_response.json.return_value = MOCK_COMPLETION_RESPONSE
|
|
return mock_response
|
|
|
|
mock.side_effect = mock_side_effect
|
|
yield mock
|
|
|
|
@pytest.fixture
|
|
def mock_http_async_handler():
|
|
"""Fixture to mock the async HTTP handler"""
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
|
new_callable=AsyncMock
|
|
) as mock:
|
|
print(f"Creating mock async HTTP handler: {mock}")
|
|
|
|
mock_response = MagicMock()
|
|
mock_response.raise_for_status.return_value = None
|
|
mock_response.status_code = 200
|
|
mock_response.headers = {"content-type": "application/json"}
|
|
|
|
mock_response.json.return_value = MOCK_COMPLETION_RESPONSE
|
|
mock_response.text = json.dumps(MOCK_COMPLETION_RESPONSE)
|
|
|
|
async def mock_side_effect(*args, **kwargs):
|
|
if kwargs.get("stream", True):
|
|
async def mock_aiter():
|
|
for chunk in MOCK_STREAMING_CHUNKS:
|
|
yield f"data: {json.dumps(chunk)}".encode('utf-8')
|
|
yield b"data: [DONE]"
|
|
|
|
mock_response.aiter_lines = mock_aiter
|
|
return mock_response
|
|
|
|
mock.side_effect = mock_side_effect
|
|
yield mock
|
|
|
|
class TestHuggingFace(BaseLLMChatTest):
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def setup(self, mock_provider_mapping, mock_http_handler, mock_http_async_handler):
|
|
|
|
self.mock_provider_mapping = mock_provider_mapping
|
|
self.mock_http = mock_http_handler
|
|
self.mock_http_async = mock_http_async_handler
|
|
self.model = "huggingface/together/meta-llama/Meta-Llama-3-8B-Instruct"
|
|
litellm.set_verbose = False
|
|
def get_base_completion_call_args(self) -> dict:
|
|
"""Implementation of abstract method from BaseLLMChatTest"""
|
|
return {"model": self.model}
|
|
|
|
def test_completion_non_streaming(self):
|
|
messages = [{"role": "user", "content": "This is a dummy message"}]
|
|
|
|
response = litellm.completion(
|
|
model=self.model,
|
|
messages=messages,
|
|
stream=False
|
|
)
|
|
assert isinstance(response, ModelResponse)
|
|
assert response.choices[0].message.content == "This is a test response from the mocked HuggingFace API."
|
|
assert response.usage is not None
|
|
assert response.model == self.model.split("/",2)[2]
|
|
|
|
def test_completion_streaming(self):
|
|
messages = [{"role": "user", "content": "This is a dummy message"}]
|
|
|
|
response = litellm.completion(
|
|
model=self.model,
|
|
messages=messages,
|
|
stream=True
|
|
)
|
|
|
|
chunks = list(response)
|
|
assert len(chunks) > 0
|
|
|
|
assert self.mock_http.called
|
|
call_args = self.mock_http.call_args
|
|
assert call_args is not None
|
|
|
|
kwargs = call_args[1]
|
|
data = json.loads(kwargs["data"])
|
|
assert data["stream"] is True
|
|
assert data["messages"] == messages
|
|
|
|
assert isinstance(chunks, list)
|
|
assert isinstance(chunks[0], ModelResponseStream)
|
|
assert isinstance(chunks[0].id, str)
|
|
assert chunks[0].model == self.model.split("/",1)[1]
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_completion_streaming(self):
|
|
"""Test async streaming completion"""
|
|
messages = [{"role": "user", "content": "This is a dummy message"}]
|
|
response = await litellm.acompletion(
|
|
model=self.model,
|
|
messages=messages,
|
|
stream=True
|
|
)
|
|
|
|
chunks = []
|
|
async for chunk in response:
|
|
chunks.append(chunk)
|
|
|
|
assert self.mock_http_async.called
|
|
assert len(chunks) > 0
|
|
assert isinstance(chunks[0], ModelResponseStream)
|
|
assert isinstance(chunks[0].id, str)
|
|
assert chunks[0].model == self.model.split("/",1)[1]
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_async_completion_non_streaming(self):
|
|
"""Test async non-streaming completion"""
|
|
messages = [{"role": "user", "content": "This is a dummy message"}]
|
|
response = await litellm.acompletion(
|
|
model=self.model,
|
|
messages=messages,
|
|
stream=False
|
|
)
|
|
|
|
assert self.mock_http_async.called
|
|
assert isinstance(response, ModelResponse)
|
|
assert response.choices[0].message.content == "This is a test response from the mocked HuggingFace API."
|
|
assert response.usage is not None
|
|
assert response.model == self.model.split("/",2)[2]
|
|
|
|
def test_tool_call_no_arguments(self, tool_call_no_arguments):
|
|
|
|
mock_tool_response = {
|
|
**MOCK_COMPLETION_RESPONSE,
|
|
"choices": [{
|
|
"finish_reason": "tool_calls",
|
|
"index": 0,
|
|
"message": tool_call_no_arguments
|
|
}]
|
|
}
|
|
|
|
with patch.object(self.mock_http, "side_effect", lambda *args, **kwargs: MagicMock(
|
|
status_code=200,
|
|
json=lambda: mock_tool_response,
|
|
raise_for_status=lambda: None
|
|
)):
|
|
messages = [{"role": "user", "content": "Get the FAQ"}]
|
|
tools = [{
|
|
"type": "function",
|
|
"function": {
|
|
"name": "Get-FAQ",
|
|
"description": "Get FAQ information",
|
|
"parameters": {
|
|
"type": "object",
|
|
"properties": {},
|
|
"required": []
|
|
}
|
|
}
|
|
}]
|
|
|
|
response = litellm.completion(
|
|
model=self.model,
|
|
messages=messages,
|
|
tools=tools,
|
|
tool_choice="auto"
|
|
)
|
|
|
|
assert response.choices[0].message.tool_calls is not None
|
|
assert len(response.choices[0].message.tool_calls) == 1
|
|
assert response.choices[0].message.tool_calls[0].function.name == tool_call_no_arguments["tool_calls"][0]["function"]["name"]
|
|
assert response.choices[0].message.tool_calls[0].function.arguments == tool_call_no_arguments["tool_calls"][0]["function"]["arguments"]
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, provider, expected_url",
|
|
[
|
|
("meta-llama/Llama-3-8B-Instruct", None, "https://router.huggingface.co/hf-inference/models/meta-llama/Llama-3-8B-Instruct/v1/chat/completions"),
|
|
("together/meta-llama/Llama-3-8B-Instruct", None, "https://router.huggingface.co/together/v1/chat/completions"),
|
|
("novita/meta-llama/Llama-3-8B-Instruct", None, "https://router.huggingface.co/novita/chat/completions"),
|
|
("http://custom-endpoint.com/v1/chat/completions", None, "http://custom-endpoint.com/v1/chat/completions"),
|
|
],
|
|
)
|
|
def test_get_complete_url(self, model, provider, expected_url):
|
|
"""Test that the complete URL is constructed correctly for different providers"""
|
|
from litellm.llms.huggingface.chat.transformation import HuggingFaceChatConfig
|
|
|
|
config = HuggingFaceChatConfig()
|
|
url = config.get_complete_url(
|
|
api_base=None,
|
|
model=model,
|
|
optional_params={},
|
|
stream=False,
|
|
api_key="test_api_key",
|
|
litellm_params={}
|
|
)
|
|
assert url == expected_url
|
|
|
|
def test_validate_environment(self):
|
|
"""Test that the environment is validated correctly"""
|
|
from litellm.llms.huggingface.chat.transformation import HuggingFaceChatConfig
|
|
|
|
config = HuggingFaceChatConfig()
|
|
|
|
headers = config.validate_environment(
|
|
headers={},
|
|
model="huggingface/fireworks-ai/meta-llama/Meta-Llama-3-8B-Instruct",
|
|
messages=[{"role": "user", "content": "Hello"}],
|
|
optional_params={},
|
|
api_key="test_api_key",
|
|
litellm_params={}
|
|
)
|
|
|
|
assert headers["Authorization"] == "Bearer test_api_key"
|
|
assert headers["content-type"] == "application/json"
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, expected_model",
|
|
[
|
|
("together/meta-llama/Llama-3-8B-Instruct", "meta-llama/Meta-Llama-3-8B-Instruct-Turbo"),
|
|
("meta-llama/Meta-Llama-3-8B-Instruct", "meta-llama/Meta-Llama-3-8B-Instruct"),
|
|
],
|
|
)
|
|
def test_transform_request(self, model, expected_model):
|
|
from litellm.llms.huggingface.chat.transformation import HuggingFaceChatConfig
|
|
|
|
config = HuggingFaceChatConfig()
|
|
messages = [{"role": "user", "content": "Hello"}]
|
|
|
|
transformed_request = config.transform_request(
|
|
model=model,
|
|
messages=messages,
|
|
optional_params={},
|
|
litellm_params={},
|
|
headers={}
|
|
)
|
|
|
|
assert transformed_request["model"] == expected_model
|
|
assert transformed_request["messages"] == messages
|
|
|
|
@pytest.mark.asyncio
|
|
async def test_completion_cost(self):
|
|
pass |