litellm-mirror/tests/llm_translation/test_max_completion_tokens.py
Krish Dholakia ac9f03beae
Allow passing thinking param to litellm proxy via client sdk + Code QA Refactor on get_optional_params (get correct values) (#9386)
* fix(litellm_proxy/chat/transformation.py): support 'thinking' param

Fixes https://github.com/BerriAI/litellm/issues/9380

* feat(azure/gpt_transformation.py): add azure audio model support

Closes https://github.com/BerriAI/litellm/issues/6305

* fix(utils.py): use provider_config in common functions

* fix(utils.py): add missing provider configs to get_chat_provider_config

* test: fix test

* fix: fix path

* feat(utils.py): make bedrock invoke nova config baseconfig compatible

* fix: fix linting errors

* fix(azure_ai/transformation.py): remove buggy optional param filtering for azure ai

Removes incorrect check for support tool choice when calling azure ai - prevented calling models with response_format unless on litell model cost map

* fix(amazon_cohere_transformation.py): fix bedrock invoke cohere transformation to inherit from coherechatconfig

* test: fix azure ai tool choice mapping

* fix: fix model cost map to add 'supports_tool_choice' to cohere models

* fix(get_supported_openai_params.py): check if custom llm provider in llm providers

* fix(get_supported_openai_params.py): fix llm provider in list check

* fix: fix ruff check errors

* fix: support defs when calling bedrock nova

* fix(factory.py): fix test
2025-04-07 21:04:11 -07:00

391 lines
12 KiB
Python

import json
import os
import sys
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from datetime import datetime
from unittest.mock import AsyncMock
from dotenv import load_dotenv
load_dotenv()
import httpx
import pytest
from respx import MockRouter
from unittest.mock import patch, MagicMock, AsyncMock
import litellm
from litellm import Choices, Message, ModelResponse
# Adds the parent directory to the system path
def return_mocked_response(model: str):
if model == "bedrock/mistral.mistral-large-2407-v1:0":
return {
"metrics": {"latencyMs": 316},
"output": {
"message": {
"content": [{"text": "Hello! How are you doing today? How can"}],
"role": "assistant",
}
},
"stopReason": "max_tokens",
"usage": {"inputTokens": 5, "outputTokens": 10, "totalTokens": 15},
}
@pytest.mark.parametrize(
"model",
[
"bedrock/mistral.mistral-large-2407-v1:0",
],
)
@pytest.mark.asyncio()
async def test_bedrock_max_completion_tokens(model: str):
"""
Tests that:
- max_completion_tokens is passed as max_tokens to bedrock models
"""
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler
litellm.set_verbose = True
client = AsyncHTTPHandler()
mock_response = return_mocked_response(model)
_model = model.split("/")[1]
print("\n\nmock_response: ", mock_response)
with patch.object(client, "post") as mock_client:
try:
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = json.loads(mock_client.call_args.kwargs["data"])
print("request_body: ", request_body)
assert request_body == {
"messages": [{"role": "user", "content": [{"text": "Hello!"}]}],
"additionalModelRequestFields": {},
"system": [],
"inferenceConfig": {"maxTokens": 10},
}
@pytest.mark.parametrize(
"model",
["anthropic/claude-3-sonnet-20240229", "anthropic/claude-3-opus-20240229"],
)
@pytest.mark.asyncio()
async def test_anthropic_api_max_completion_tokens(model: str):
"""
Tests that:
- max_completion_tokens is passed as max_tokens to anthropic models
"""
litellm.set_verbose = True
from litellm.llms.custom_httpx.http_handler import HTTPHandler
mock_response = {
"content": [{"text": "Hi! My name is Claude.", "type": "text"}],
"id": "msg_013Zva2CMHLNnXjNJJKqJ2EF",
"model": "claude-3-5-sonnet-20240620",
"role": "assistant",
"stop_reason": "end_turn",
"stop_sequence": None,
"type": "message",
"usage": {"input_tokens": 2095, "output_tokens": 503},
}
client = HTTPHandler()
print("\n\nmock_response: ", mock_response)
with patch.object(client, "post") as mock_client:
try:
response = await litellm.acompletion(
model=model,
max_completion_tokens=10,
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs["json"]
print("request_body: ", request_body)
assert request_body == {
"messages": [
{"role": "user", "content": [{"type": "text", "text": "Hello!"}]}
],
"max_tokens": 10,
"model": model.split("/")[-1],
}
def test_all_model_configs():
from litellm.llms.vertex_ai.vertex_ai_partner_models.ai21.transformation import (
VertexAIAi21Config,
)
from litellm.llms.vertex_ai.vertex_ai_partner_models.llama3.transformation import (
VertexAILlama3Config,
)
assert (
"max_completion_tokens"
in VertexAILlama3Config().get_supported_openai_params(model="llama3")
)
assert VertexAILlama3Config().map_openai_params(
{"max_completion_tokens": 10}, {}, "llama3", drop_params=False
) == {"max_tokens": 10}
assert "max_completion_tokens" in VertexAIAi21Config().get_supported_openai_params(
model="jamba-1.5-mini@001"
)
assert VertexAIAi21Config().map_openai_params(
{"max_completion_tokens": 10}, {}, "jamba-1.5-mini@001", drop_params=False
) == {"max_tokens": 10}
from litellm.llms.fireworks_ai.chat.transformation import (
FireworksAIConfig,
)
assert "max_completion_tokens" in FireworksAIConfig().get_supported_openai_params(
model="llama3"
)
assert FireworksAIConfig().map_openai_params(
model="llama3",
non_default_params={"max_completion_tokens": 10},
optional_params={},
drop_params=False,
) == {"max_tokens": 10}
from litellm.llms.nvidia_nim.chat import NvidiaNimConfig
assert "max_completion_tokens" in NvidiaNimConfig().get_supported_openai_params(
model="llama3"
)
assert NvidiaNimConfig().map_openai_params(
model="llama3",
non_default_params={"max_completion_tokens": 10},
optional_params={},
drop_params=False,
) == {"max_tokens": 10}
from litellm.llms.ollama_chat import OllamaChatConfig
assert "max_completion_tokens" in OllamaChatConfig().get_supported_openai_params(
model="llama3"
)
assert OllamaChatConfig().map_openai_params(
model="llama3",
non_default_params={"max_completion_tokens": 10},
optional_params={},
drop_params=False,
) == {"num_predict": 10}
from litellm.llms.predibase.chat.transformation import PredibaseConfig
assert "max_completion_tokens" in PredibaseConfig().get_supported_openai_params(
model="llama3"
)
assert PredibaseConfig().map_openai_params(
model="llama3",
non_default_params={"max_completion_tokens": 10},
optional_params={},
drop_params=False,
) == {"max_new_tokens": 10}
from litellm.llms.codestral.completion.transformation import (
CodestralTextCompletionConfig,
)
assert (
"max_completion_tokens"
in CodestralTextCompletionConfig().get_supported_openai_params(model="llama3")
)
assert CodestralTextCompletionConfig().map_openai_params(
model="llama3",
non_default_params={"max_completion_tokens": 10},
optional_params={},
drop_params=False,
) == {"max_tokens": 10}
from litellm.llms.volcengine import VolcEngineConfig
assert "max_completion_tokens" in VolcEngineConfig().get_supported_openai_params(
model="llama3"
)
assert VolcEngineConfig().map_openai_params(
model="llama3",
non_default_params={"max_completion_tokens": 10},
optional_params={},
drop_params=False,
) == {"max_tokens": 10}
from litellm.llms.ai21.chat.transformation import AI21ChatConfig
assert "max_completion_tokens" in AI21ChatConfig().get_supported_openai_params(
"jamba-1.5-mini@001"
)
assert AI21ChatConfig().map_openai_params(
model="jamba-1.5-mini@001",
non_default_params={"max_completion_tokens": 10},
optional_params={},
drop_params=False,
) == {"max_tokens": 10}
from litellm.llms.azure.chat.gpt_transformation import AzureOpenAIConfig
assert "max_completion_tokens" in AzureOpenAIConfig().get_supported_openai_params(
model="gpt-3.5-turbo"
)
assert AzureOpenAIConfig().map_openai_params(
model="gpt-3.5-turbo",
non_default_params={"max_completion_tokens": 10},
optional_params={},
api_version="2022-12-01",
drop_params=False,
) == {"max_completion_tokens": 10}
from litellm.llms.bedrock.chat.converse_transformation import AmazonConverseConfig
assert (
"max_completion_tokens"
in AmazonConverseConfig().get_supported_openai_params(
model="anthropic.claude-3-sonnet-20240229-v1:0"
)
)
assert AmazonConverseConfig().map_openai_params(
model="anthropic.claude-3-sonnet-20240229-v1:0",
non_default_params={"max_completion_tokens": 10},
optional_params={},
drop_params=False,
) == {"maxTokens": 10}
from litellm.llms.codestral.completion.transformation import (
CodestralTextCompletionConfig,
)
assert (
"max_completion_tokens"
in CodestralTextCompletionConfig().get_supported_openai_params(model="llama3")
)
assert CodestralTextCompletionConfig().map_openai_params(
model="llama3",
non_default_params={"max_completion_tokens": 10},
optional_params={},
drop_params=False,
) == {"max_tokens": 10}
from litellm import (
AmazonAnthropicClaude3Config,
AmazonAnthropicConfig,
)
assert (
"max_completion_tokens"
in AmazonAnthropicClaude3Config().get_supported_openai_params(
model="anthropic.claude-3-sonnet-20240229-v1:0"
)
)
assert AmazonAnthropicClaude3Config().map_openai_params(
non_default_params={"max_completion_tokens": 10},
optional_params={},
model="anthropic.claude-3-sonnet-20240229-v1:0",
drop_params=False,
) == {"max_tokens": 10}
assert (
"max_completion_tokens"
in AmazonAnthropicConfig().get_supported_openai_params(model="")
)
assert AmazonAnthropicConfig().map_openai_params(
non_default_params={"max_completion_tokens": 10},
optional_params={},
model="",
drop_params=False,
) == {"max_tokens_to_sample": 10}
from litellm.llms.databricks.chat.transformation import DatabricksConfig
assert "max_completion_tokens" in DatabricksConfig().get_supported_openai_params()
assert DatabricksConfig().map_openai_params(
model="databricks/llama-3-70b-instruct",
drop_params=False,
non_default_params={"max_completion_tokens": 10},
optional_params={},
) == {"max_tokens": 10}
from litellm.llms.vertex_ai.vertex_ai_partner_models.anthropic.transformation import (
VertexAIAnthropicConfig,
)
assert (
"max_completion_tokens"
in VertexAIAnthropicConfig().get_supported_openai_params(
model="claude-3-5-sonnet-20240620"
)
)
assert VertexAIAnthropicConfig().map_openai_params(
non_default_params={"max_completion_tokens": 10},
optional_params={},
model="claude-3-5-sonnet-20240620",
drop_params=False,
) == {"max_tokens": 10}
from litellm.llms.vertex_ai.gemini.vertex_and_google_ai_studio_gemini import (
VertexGeminiConfig,
)
from litellm.llms.gemini.chat.transformation import GoogleAIStudioGeminiConfig
assert "max_completion_tokens" in VertexGeminiConfig().get_supported_openai_params(
model="gemini-1.0-pro"
)
assert VertexGeminiConfig().map_openai_params(
model="gemini-1.0-pro",
non_default_params={"max_completion_tokens": 10},
optional_params={},
drop_params=False,
) == {"max_output_tokens": 10}
assert (
"max_completion_tokens"
in GoogleAIStudioGeminiConfig().get_supported_openai_params(
model="gemini-1.0-pro"
)
)
assert GoogleAIStudioGeminiConfig().map_openai_params(
model="gemini-1.0-pro",
non_default_params={"max_completion_tokens": 10},
optional_params={},
drop_params=False,
) == {"max_output_tokens": 10}
assert "max_completion_tokens" in VertexGeminiConfig().get_supported_openai_params(
model="gemini-1.0-pro"
)
assert VertexGeminiConfig().map_openai_params(
model="gemini-1.0-pro",
non_default_params={"max_completion_tokens": 10},
optional_params={},
drop_params=False,
) == {"max_output_tokens": 10}