mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* test: update tests to new deployment model * test: update model name * test: skip cohere rbac issue test * test: update test - replace gpt-4o model
523 lines
16 KiB
Python
523 lines
16 KiB
Python
import asyncio
|
|
import json
|
|
import os
|
|
import sys
|
|
import traceback
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
import io
|
|
import os
|
|
from typing import Optional, Dict
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
|
|
import os
|
|
from unittest.mock import AsyncMock, MagicMock, patch
|
|
|
|
import pytest
|
|
|
|
import litellm
|
|
from litellm.types.rerank import RerankResponse
|
|
from litellm import RateLimitError, Timeout, completion, completion_cost, embedding
|
|
from litellm.integrations.custom_logger import CustomLogger
|
|
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
|
|
|
|
|
|
def assert_response_shape(response, custom_llm_provider):
|
|
expected_response_shape = {"id": str, "results": list, "meta": dict}
|
|
|
|
expected_results_shape = {
|
|
"index": int,
|
|
"relevance_score": float,
|
|
"document": Optional[Dict[str, str]],
|
|
}
|
|
|
|
expected_meta_shape = {"api_version": dict, "billed_units": dict}
|
|
|
|
expected_api_version_shape = {"version": str}
|
|
|
|
expected_billed_units_shape = {"search_units": int}
|
|
|
|
assert isinstance(response.id, expected_response_shape["id"])
|
|
assert isinstance(response.results, expected_response_shape["results"])
|
|
for result in response.results:
|
|
assert isinstance(result["index"], expected_results_shape["index"])
|
|
assert isinstance(
|
|
result["relevance_score"], expected_results_shape["relevance_score"]
|
|
)
|
|
if "document" in result:
|
|
assert isinstance(result["document"], Dict)
|
|
assert isinstance(result["document"]["text"], str)
|
|
assert isinstance(response.meta, expected_response_shape["meta"])
|
|
|
|
if custom_llm_provider == "cohere":
|
|
|
|
assert isinstance(
|
|
response.meta["api_version"], expected_meta_shape["api_version"]
|
|
)
|
|
assert isinstance(
|
|
response.meta["api_version"]["version"],
|
|
expected_api_version_shape["version"],
|
|
)
|
|
assert isinstance(
|
|
response.meta["billed_units"], expected_meta_shape["billed_units"]
|
|
)
|
|
assert isinstance(
|
|
response.meta["billed_units"]["search_units"],
|
|
expected_billed_units_shape["search_units"],
|
|
)
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_basic_rerank(sync_mode):
|
|
litellm.set_verbose = True
|
|
if sync_mode is True:
|
|
response = litellm.rerank(
|
|
model="cohere/rerank-english-v3.0",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
top_n=3,
|
|
)
|
|
|
|
print("re rank response: ", response)
|
|
|
|
assert response.id is not None
|
|
assert response.results is not None
|
|
|
|
assert_response_shape(response, custom_llm_provider="cohere")
|
|
else:
|
|
response = await litellm.arerank(
|
|
model="cohere/rerank-english-v3.0",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
top_n=3,
|
|
)
|
|
|
|
print("async re rank response: ", response)
|
|
|
|
assert response.id is not None
|
|
assert response.results is not None
|
|
|
|
assert_response_shape(response, custom_llm_provider="cohere")
|
|
|
|
print("response", response.model_dump_json(indent=4))
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.skip(reason="Skipping test due to 503 Service Temporarily Unavailable")
|
|
async def test_basic_rerank_together_ai(sync_mode):
|
|
try:
|
|
if sync_mode is True:
|
|
response = litellm.rerank(
|
|
model="together_ai/Salesforce/Llama-Rank-V1",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
top_n=3,
|
|
)
|
|
|
|
print("re rank response: ", response)
|
|
|
|
assert response.id is not None
|
|
assert response.results is not None
|
|
|
|
assert_response_shape(response, custom_llm_provider="together_ai")
|
|
else:
|
|
response = await litellm.arerank(
|
|
model="together_ai/Salesforce/Llama-Rank-V1",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
top_n=3,
|
|
)
|
|
|
|
print("async re rank response: ", response)
|
|
|
|
assert response.id is not None
|
|
assert response.results is not None
|
|
|
|
assert_response_shape(response, custom_llm_provider="together_ai")
|
|
except Exception as e:
|
|
if "Service unavailable" in str(e):
|
|
pytest.skip("Skipping test due to 503 Service Temporarily Unavailable")
|
|
raise e
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.skip(reason="Skipping test due to Cohere RBAC issues")
|
|
async def test_basic_rerank_azure_ai(sync_mode):
|
|
import os
|
|
|
|
litellm.set_verbose = True
|
|
|
|
if sync_mode is True:
|
|
response = litellm.rerank(
|
|
model="azure_ai/Cohere-rerank-v3-multilingual-ko",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
top_n=3,
|
|
api_key=os.getenv("AZURE_AI_COHERE_API_KEY"),
|
|
api_base=os.getenv("AZURE_AI_COHERE_API_BASE"),
|
|
)
|
|
|
|
print("re rank response: ", response)
|
|
|
|
assert response.id is not None
|
|
assert response.results is not None
|
|
|
|
assert_response_shape(response, custom_llm_provider="together_ai")
|
|
else:
|
|
response = await litellm.arerank(
|
|
model="azure_ai/Cohere-rerank-v3-multilingual-ko",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
top_n=3,
|
|
api_key=os.getenv("AZURE_AI_COHERE_API_KEY"),
|
|
api_base=os.getenv("AZURE_AI_COHERE_API_BASE"),
|
|
)
|
|
|
|
print("async re rank response: ", response)
|
|
|
|
assert response.id is not None
|
|
assert response.results is not None
|
|
|
|
assert_response_shape(response, custom_llm_provider="together_ai")
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
@pytest.mark.parametrize("version", ["v1", "v2"])
|
|
async def test_rerank_custom_api_base(version):
|
|
mock_response = AsyncMock()
|
|
litellm.cohere_key = "test_api_key"
|
|
|
|
def return_val():
|
|
return {
|
|
"id": "cmpl-mockid",
|
|
"results": [{"index": 0, "relevance_score": 0.95}],
|
|
"meta": {
|
|
"api_version": {"version": "1.0"},
|
|
"billed_units": {"search_units": 1},
|
|
},
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.headers = {"key": "value"}
|
|
mock_response.status_code = 200
|
|
|
|
expected_payload = {
|
|
"model": "Salesforce/Llama-Rank-V1",
|
|
"query": "hello",
|
|
"top_n": 3,
|
|
"documents": ["hello", "world"],
|
|
}
|
|
|
|
api_base = "https://exampleopenaiendpoint-production.up.railway.app/"
|
|
if version == "v1":
|
|
api_base += "v1/rerank"
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
response = await litellm.arerank(
|
|
model="cohere/Salesforce/Llama-Rank-V1",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
top_n=3,
|
|
api_base=api_base,
|
|
)
|
|
|
|
print("async re rank response: ", response)
|
|
|
|
# Assert
|
|
mock_post.assert_called_once()
|
|
print("call args", mock_post.call_args)
|
|
args_to_api = mock_post.call_args.kwargs["data"]
|
|
_url = mock_post.call_args.kwargs["url"]
|
|
print("Arguments passed to API=", args_to_api)
|
|
print("url = ", _url)
|
|
assert (
|
|
_url
|
|
== f"https://exampleopenaiendpoint-production.up.railway.app/{version}/rerank"
|
|
)
|
|
|
|
request_data = json.loads(args_to_api)
|
|
assert request_data["query"] == expected_payload["query"]
|
|
assert request_data["documents"] == expected_payload["documents"]
|
|
assert request_data["top_n"] == expected_payload["top_n"]
|
|
assert request_data["model"] == expected_payload["model"]
|
|
|
|
assert response.id is not None
|
|
assert response.results is not None
|
|
|
|
assert_response_shape(response, custom_llm_provider="cohere")
|
|
|
|
|
|
class TestLogger(CustomLogger):
|
|
|
|
def __init__(self):
|
|
self.kwargs = None
|
|
self.response_obj = None
|
|
super().__init__()
|
|
|
|
async def async_log_success_event(self, kwargs, response_obj, start_time, end_time):
|
|
print("in success event for rerank, kwargs = ", kwargs)
|
|
print("in success event for rerank, response_obj = ", response_obj)
|
|
self.kwargs = kwargs
|
|
self.response_obj = response_obj
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
async def test_rerank_custom_callbacks():
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
custom_logger = TestLogger()
|
|
litellm.callbacks = [custom_logger]
|
|
response = await litellm.arerank(
|
|
model="cohere/rerank-english-v3.0",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
top_n=3,
|
|
)
|
|
|
|
await asyncio.sleep(5)
|
|
|
|
print("async re rank response: ", response)
|
|
assert custom_logger.kwargs is not None
|
|
assert custom_logger.kwargs.get("response_cost") > 0.0
|
|
assert custom_logger.response_obj is not None
|
|
assert custom_logger.response_obj.results is not None
|
|
|
|
|
|
def test_complete_base_url_cohere():
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
client = HTTPHandler()
|
|
litellm.api_base = "http://localhost:4000"
|
|
litellm.cohere_key = "test_api_key"
|
|
litellm.set_verbose = True
|
|
|
|
text = "Hello there!"
|
|
list_texts = ["Hello there!", "How are you?", "How do you do?"]
|
|
|
|
rerank_model = "rerank-multilingual-v3.0"
|
|
|
|
with patch.object(client, "post") as mock_post:
|
|
try:
|
|
litellm.rerank(
|
|
model=rerank_model,
|
|
query=text,
|
|
documents=list_texts,
|
|
custom_llm_provider="cohere",
|
|
client=client,
|
|
)
|
|
except Exception as e:
|
|
print(e)
|
|
|
|
print("mock_post.call_args", mock_post.call_args)
|
|
mock_post.assert_called_once()
|
|
# Default to the v2 client when calling the base /rerank
|
|
assert "http://localhost:4000/v2/rerank" in mock_post.call_args.kwargs["url"]
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
@pytest.mark.parametrize("sync_mode", [True, False])
|
|
@pytest.mark.parametrize(
|
|
"top_n_1, top_n_2, expect_cache_hit",
|
|
[
|
|
(3, 3, True),
|
|
(3, None, False),
|
|
],
|
|
)
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
async def test_basic_rerank_caching(sync_mode, top_n_1, top_n_2, expect_cache_hit):
|
|
from litellm.caching.caching import Cache
|
|
|
|
litellm.set_verbose = True
|
|
litellm.cache = Cache(type="local")
|
|
|
|
if sync_mode is True:
|
|
for idx in range(2):
|
|
if idx == 0:
|
|
top_n = top_n_1
|
|
else:
|
|
top_n = top_n_2
|
|
response = litellm.rerank(
|
|
model="cohere/rerank-english-v3.0",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
top_n=top_n,
|
|
)
|
|
else:
|
|
for idx in range(2):
|
|
if idx == 0:
|
|
top_n = top_n_1
|
|
else:
|
|
top_n = top_n_2
|
|
response = await litellm.arerank(
|
|
model="cohere/rerank-english-v3.0",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
top_n=top_n,
|
|
)
|
|
|
|
await asyncio.sleep(1)
|
|
|
|
if expect_cache_hit is True:
|
|
assert "cache_key" in response._hidden_params
|
|
else:
|
|
assert "cache_key" not in response._hidden_params
|
|
|
|
print("re rank response: ", response)
|
|
|
|
assert response.id is not None
|
|
assert response.results is not None
|
|
|
|
assert_response_shape(response, custom_llm_provider="cohere")
|
|
|
|
|
|
def test_rerank_response_assertions():
|
|
r = RerankResponse(
|
|
**{
|
|
"id": "ab0fcca0-b617-11ef-b292-0242ac110002",
|
|
"results": [
|
|
{"index": 2, "relevance_score": 0.9958819150924683},
|
|
{"index": 0, "relevance_score": 0.001293411129154265},
|
|
{
|
|
"index": 1,
|
|
"relevance_score": 7.641685078851879e-05,
|
|
},
|
|
{
|
|
"index": 3,
|
|
"relevance_score": 7.621097756782547e-05,
|
|
},
|
|
],
|
|
"meta": {
|
|
"api_version": None,
|
|
"billed_units": None,
|
|
"tokens": None,
|
|
"warnings": None,
|
|
},
|
|
}
|
|
)
|
|
|
|
assert_response_shape(r, custom_llm_provider="custom")
|
|
|
|
|
|
def test_cohere_rerank_v2_client():
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler
|
|
|
|
client = HTTPHandler()
|
|
litellm.api_base = "http://localhost:4000"
|
|
litellm.set_verbose = True
|
|
|
|
text = "Hello there!"
|
|
list_texts = ["Hello there!", "How are you?", "How do you do?"]
|
|
|
|
rerank_model = "rerank-multilingual-v3.0"
|
|
|
|
with patch.object(client, "post") as mock_post:
|
|
mock_response = MagicMock()
|
|
mock_response.text = json.dumps(
|
|
{
|
|
"id": "cmpl-mockid",
|
|
"results": [
|
|
{"index": 0, "relevance_score": 0.95},
|
|
{"index": 1, "relevance_score": 0.75},
|
|
{"index": 2, "relevance_score": 0.65},
|
|
],
|
|
"usage": {"prompt_tokens": 100, "total_tokens": 150},
|
|
}
|
|
)
|
|
mock_response.status_code = 200
|
|
mock_response.headers = {"Content-Type": "application/json"}
|
|
mock_response.json = lambda: json.loads(mock_response.text)
|
|
|
|
mock_post.return_value = mock_response
|
|
|
|
response = litellm.rerank(
|
|
model=rerank_model,
|
|
query=text,
|
|
documents=list_texts,
|
|
custom_llm_provider="cohere",
|
|
max_tokens_per_doc=3,
|
|
top_n=2,
|
|
api_key="fake-api-key",
|
|
client=client,
|
|
)
|
|
|
|
# Ensure Cohere API is called with the expected params
|
|
mock_post.assert_called_once()
|
|
assert mock_post.call_args.kwargs["url"] == "http://localhost:4000/v2/rerank"
|
|
|
|
request_data = json.loads(mock_post.call_args.kwargs["data"])
|
|
assert request_data["model"] == rerank_model
|
|
assert request_data["query"] == text
|
|
assert request_data["documents"] == list_texts
|
|
assert request_data["max_tokens_per_doc"] == 3
|
|
assert request_data["top_n"] == 2
|
|
|
|
# Ensure litellm response is what we expect
|
|
assert response["results"] == mock_response.json()["results"]
|
|
|
|
|
|
@pytest.mark.flaky(retries=3, delay=1)
|
|
def test_rerank_cohere_api():
|
|
response = litellm.rerank(
|
|
model="cohere/rerank-english-v3.0",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
return_documents=True,
|
|
top_n=3,
|
|
)
|
|
print("rerank response", response)
|
|
assert response.results[0]["document"] is not None
|
|
assert response.results[0]["document"]["text"] is not None
|
|
assert response.results[0]["document"]["text"] == "hello"
|
|
assert response.results[1]["document"]["text"] == "world"
|
|
|
|
|
|
def test_rerank_infer_region_from_model_arn(monkeypatch):
|
|
|
|
mock_response = MagicMock()
|
|
|
|
monkeypatch.setenv("AWS_REGION_NAME", "us-east-1")
|
|
args = {
|
|
"model": "bedrock/arn:aws:bedrock:us-west-2::foundation-model/amazon.rerank-v1:0",
|
|
"query": "hello",
|
|
"documents": ["hello", "world"],
|
|
}
|
|
|
|
def return_val():
|
|
return {
|
|
"results": [
|
|
{"index": 0, "relevanceScore": 0.6716859340667725},
|
|
{"index": 1, "relevanceScore": 0.0004994205664843321},
|
|
]
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.headers = {"key": "value"}
|
|
mock_response.status_code = 200
|
|
|
|
client = HTTPHandler()
|
|
|
|
with patch.object(client, "post", return_value=mock_response) as mock_post:
|
|
litellm.rerank(
|
|
model=args["model"],
|
|
query=args["query"],
|
|
documents=args["documents"],
|
|
client=client,
|
|
)
|
|
|
|
mock_post.assert_called_once()
|
|
print(f"mock_post.call_args: {mock_post.call_args.kwargs}")
|
|
assert "us-west-2" in mock_post.call_args.kwargs["url"]
|
|
assert "us-east-1" not in mock_post.call_args.kwargs["url"]
|