litellm-mirror/ui/litellm-dashboard/src/components/chat_ui.tsx
2024-02-15 22:39:46 -08:00

305 lines
No EOL
9.7 KiB
TypeScript

import React, { useState, useEffect } from "react";
import ReactMarkdown from "react-markdown";
import { Card, Title, Table, TableHead, TableRow, TableCell, TableBody, Grid, Tab,
TabGroup,
TabList,
TabPanel,
Metric,
Select,
SelectItem,
TabPanels, } from "@tremor/react";
import { modelInfoCall } from "./networking";
import openai from "openai";
import { Prism as SyntaxHighlighter } from 'react-syntax-highlighter';
interface ChatUIProps {
accessToken: string | null;
token: string | null;
userRole: string | null;
userID: string | null;
}
async function generateModelResponse(inputMessage: string, updateUI: (chunk: string) => void, selectedModel: string, accessToken: string) {
// base url should be the current base_url
const isLocal = process.env.NODE_ENV === "development";
console.log("isLocal:", isLocal);
const proxyBaseUrl = isLocal ? "http://localhost:4000" : window.location.origin;
const client = new openai.OpenAI({
apiKey: accessToken, // Replace with your OpenAI API key
baseURL: proxyBaseUrl, // Replace with your OpenAI API base URL
dangerouslyAllowBrowser: true, // using a temporary litellm proxy key
});
const response = await client.chat.completions.create({
model: selectedModel,
stream: true,
messages: [
{
role: 'user',
content: inputMessage,
},
],
});
for await (const chunk of response) {
console.log(chunk);
if (chunk.choices[0].delta.content) {
updateUI(chunk.choices[0].delta.content);
}
}
}
const ChatUI: React.FC<ChatUIProps> = ({ accessToken, token, userRole, userID }) => {
const [inputMessage, setInputMessage] = useState("");
const [chatHistory, setChatHistory] = useState<any[]>([]);
const [selectedModel, setSelectedModel] = useState<string | undefined>(undefined);
const [modelInfo, setModelInfo] = useState<any | null>(null); // Declare modelInfo at the component level
useEffect(() => {
if (!accessToken || !token || !userRole || !userID) {
return;
}
// Fetch model info and set the default selected model
const fetchModelInfo = async () => {
const fetchedModelInfo = await modelInfoCall(accessToken, userID, userRole);
console.log("model_info:", fetchedModelInfo);
if (fetchedModelInfo?.data.length > 0) {
setModelInfo(fetchedModelInfo);
setSelectedModel(fetchedModelInfo.data[0].model_name);
}
};
fetchModelInfo();
}, [accessToken, userID, userRole]);
const updateUI = (role: string, chunk: string) => {
setChatHistory((prevHistory) => {
const lastMessage = prevHistory[prevHistory.length - 1];
if (lastMessage && lastMessage.role === role) {
return [
...prevHistory.slice(0, prevHistory.length - 1),
{ role, content: lastMessage.content + chunk },
];
} else {
return [...prevHistory, { role, content: chunk }];
}
});
};
const handleSendMessage = async () => {
if (inputMessage.trim() === "") return;
if (!accessToken || !token || !userRole || !userID) {
return;
}
setChatHistory((prevHistory) => [
...prevHistory,
{ role: "user", content: inputMessage },
]);
try {
if (selectedModel) {
await generateModelResponse(inputMessage, (chunk) => updateUI("assistant", chunk), selectedModel, accessToken);
}
} catch (error) {
console.error("Error fetching model response", error);
updateUI("assistant", "Error fetching model response");
}
setInputMessage("");
};
return (
<div style={{ width: "100%", position: "relative" }}>
<Grid className="gap-2 p-10 h-[75vh] w-full">
<Card>
<TabGroup>
<TabList className="mt-4">
<Tab>Chat</Tab>
<Tab>API Reference</Tab>
</TabList>
<TabPanels>
<TabPanel>
<div>
<label>Select Model:</label>
<select
value={selectedModel || ""}
onChange={(e) => setSelectedModel(e.target.value)}
>
{/* Populate dropdown options from available models */}
{modelInfo?.data.map((element: { model_name: string }) => (
<option key={element.model_name} value={element.model_name}>
{element.model_name}
</option>
))}
</select>
</div>
<Table className="mt-5" style={{ display: "block", maxHeight: "60vh", overflowY: "auto" }}>
<TableHead>
<TableRow>
<TableCell>
<Title>Chat</Title>
</TableCell>
</TableRow>
</TableHead>
<TableBody>
{chatHistory.map((message, index) => (
<TableRow key={index}>
<TableCell>{`${message.role}: ${message.content}`}</TableCell>
</TableRow>
))}
</TableBody>
</Table>
<div className="mt-3" style={{ position: "absolute", bottom: 5, width: "95%" }}>
<div className="flex">
<input
type="text"
value={inputMessage}
onChange={(e) => setInputMessage(e.target.value)}
className="flex-1 p-2 border rounded-md mr-2"
placeholder="Type your message..."
/>
<button onClick={handleSendMessage} className="p-2 bg-blue-500 text-white rounded-md">
Send
</button>
</div>
</div>
</TabPanel>
<TabPanel>
<TabGroup>
<TabList>
<Tab>OpenAI Python SDK</Tab>
<Tab>LlamaIndex</Tab>
<Tab>Langchain Py</Tab>
</TabList>
<TabPanels>
<TabPanel>
<SyntaxHighlighter language="python">
{`
import openai
client = openai.OpenAI(
api_key="your_api_key",
base_url="http://0.0.0.0:4000" # proxy base url
)
response = client.chat.completions.create(
model="gpt-3.5-turbo", # model to use from Models Tab
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"metadata": {
"generation_name": "ishaan-generation-openai-client",
"generation_id": "openai-client-gen-id22",
"trace_id": "openai-client-trace-id22",
"trace_user_id": "openai-client-user-id2"
}
}
)
print(response)
`}
</SyntaxHighlighter>
</TabPanel>
<TabPanel>
<SyntaxHighlighter language="python">
{`
import os, dotenv
from llama_index.llms import AzureOpenAI
from llama_index.embeddings import AzureOpenAIEmbedding
from llama_index import VectorStoreIndex, SimpleDirectoryReader, ServiceContext
llm = AzureOpenAI(
engine="azure-gpt-3.5", # model_name on litellm proxy
temperature=0.0,
azure_endpoint="http://0.0.0.0:4000", # litellm proxy endpoint
api_key="sk-1234", # litellm proxy API Key
api_version="2023-07-01-preview",
)
embed_model = AzureOpenAIEmbedding(
deployment_name="azure-embedding-model",
azure_endpoint="http://0.0.0.0:4000",
api_key="sk-1234",
api_version="2023-07-01-preview",
)
documents = SimpleDirectoryReader("llama_index_data").load_data()
service_context = ServiceContext.from_defaults(llm=llm, embed_model=embed_model)
index = VectorStoreIndex.from_documents(documents, service_context=service_context)
query_engine = index.as_query_engine()
response = query_engine.query("What did the author do growing up?")
print(response)
`}
</SyntaxHighlighter>
</TabPanel>
<TabPanel>
<SyntaxHighlighter language="python">
{`
from langchain.chat_models import ChatOpenAI
from langchain.prompts.chat import (
ChatPromptTemplate,
HumanMessagePromptTemplate,
SystemMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
chat = ChatOpenAI(
openai_api_base="http://0.0.0.0:8000",
model = "gpt-3.5-turbo",
temperature=0.1,
extra_body={
"metadata": {
"generation_name": "ishaan-generation-langchain-client",
"generation_id": "langchain-client-gen-id22",
"trace_id": "langchain-client-trace-id22",
"trace_user_id": "langchain-client-user-id2"
}
}
)
messages = [
SystemMessage(
content="You are a helpful assistant that im using to make a test request to."
),
HumanMessage(
content="test from litellm. tell me why it's amazing in 1 sentence"
),
]
response = chat(messages)
print(response)
`}
</SyntaxHighlighter>
</TabPanel>
</TabPanels>
</TabGroup>
</TabPanel>
</TabPanels>
</TabGroup>
</Card>
</Grid>
</div>
);
};
export default ChatUI;