mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* build(pyproject.toml): add new dev dependencies - for type checking * build: reformat files to fit black * ci: reformat to fit black * ci(test-litellm.yml): make tests run clear * build(pyproject.toml): add ruff * fix: fix ruff checks * build(mypy/): fix mypy linting errors * fix(hashicorp_secret_manager.py): fix passing cert for tls auth * build(mypy/): resolve all mypy errors * test: update test * fix: fix black formatting * build(pre-commit-config.yaml): use poetry run black * fix(proxy_server.py): fix linting error * fix: fix ruff safe representation error
193 lines
6.4 KiB
Python
193 lines
6.4 KiB
Python
"""
|
|
Humanloop integration
|
|
|
|
https://humanloop.com/
|
|
"""
|
|
|
|
from typing import Any, Dict, List, Optional, Tuple, TypedDict, Union, cast
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm.caching import DualCache
|
|
from litellm.llms.custom_httpx.http_handler import _get_httpx_client
|
|
from litellm.secret_managers.main import get_secret_str
|
|
from litellm.types.llms.openai import AllMessageValues
|
|
from litellm.types.utils import StandardCallbackDynamicParams
|
|
|
|
from .custom_logger import CustomLogger
|
|
|
|
|
|
class PromptManagementClient(TypedDict):
|
|
prompt_id: str
|
|
prompt_template: List[AllMessageValues]
|
|
model: Optional[str]
|
|
optional_params: Optional[Dict[str, Any]]
|
|
|
|
|
|
class HumanLoopPromptManager(DualCache):
|
|
@property
|
|
def integration_name(self):
|
|
return "humanloop"
|
|
|
|
def _get_prompt_from_id_cache(
|
|
self, humanloop_prompt_id: str
|
|
) -> Optional[PromptManagementClient]:
|
|
return cast(
|
|
Optional[PromptManagementClient], self.get_cache(key=humanloop_prompt_id)
|
|
)
|
|
|
|
def _compile_prompt_helper(
|
|
self, prompt_template: List[AllMessageValues], prompt_variables: Dict[str, Any]
|
|
) -> List[AllMessageValues]:
|
|
"""
|
|
Helper function to compile the prompt by substituting variables in the template.
|
|
|
|
Args:
|
|
prompt_template: List[AllMessageValues]
|
|
prompt_variables (dict): A dictionary of variables to substitute into the prompt template.
|
|
|
|
Returns:
|
|
list: A list of dictionaries with variables substituted.
|
|
"""
|
|
compiled_prompts: List[AllMessageValues] = []
|
|
|
|
for template in prompt_template:
|
|
tc = template.get("content")
|
|
if tc and isinstance(tc, str):
|
|
formatted_template = tc.replace("{{", "{").replace("}}", "}")
|
|
compiled_content = formatted_template.format(**prompt_variables)
|
|
template["content"] = compiled_content
|
|
compiled_prompts.append(template)
|
|
|
|
return compiled_prompts
|
|
|
|
def _get_prompt_from_id_api(
|
|
self, humanloop_prompt_id: str, humanloop_api_key: str
|
|
) -> PromptManagementClient:
|
|
client = _get_httpx_client()
|
|
|
|
base_url = "https://api.humanloop.com/v5/prompts/{}".format(humanloop_prompt_id)
|
|
|
|
response = client.get(
|
|
url=base_url,
|
|
headers={
|
|
"X-Api-Key": humanloop_api_key,
|
|
"Content-Type": "application/json",
|
|
},
|
|
)
|
|
|
|
try:
|
|
response.raise_for_status()
|
|
except httpx.HTTPStatusError as e:
|
|
raise Exception(f"Error getting prompt from Humanloop: {e.response.text}")
|
|
|
|
json_response = response.json()
|
|
template_message = json_response["template"]
|
|
if isinstance(template_message, dict):
|
|
template_messages = [template_message]
|
|
elif isinstance(template_message, list):
|
|
template_messages = template_message
|
|
else:
|
|
raise ValueError(f"Invalid template message type: {type(template_message)}")
|
|
template_model = json_response["model"]
|
|
optional_params = {}
|
|
for k, v in json_response.items():
|
|
if k in litellm.OPENAI_CHAT_COMPLETION_PARAMS:
|
|
optional_params[k] = v
|
|
return PromptManagementClient(
|
|
prompt_id=humanloop_prompt_id,
|
|
prompt_template=cast(List[AllMessageValues], template_messages),
|
|
model=template_model,
|
|
optional_params=optional_params,
|
|
)
|
|
|
|
def _get_prompt_from_id(
|
|
self, humanloop_prompt_id: str, humanloop_api_key: str
|
|
) -> PromptManagementClient:
|
|
prompt = self._get_prompt_from_id_cache(humanloop_prompt_id)
|
|
if prompt is None:
|
|
prompt = self._get_prompt_from_id_api(
|
|
humanloop_prompt_id, humanloop_api_key
|
|
)
|
|
self.set_cache(
|
|
key=humanloop_prompt_id,
|
|
value=prompt,
|
|
ttl=litellm.HUMANLOOP_PROMPT_CACHE_TTL_SECONDS,
|
|
)
|
|
return prompt
|
|
|
|
def compile_prompt(
|
|
self,
|
|
prompt_template: List[AllMessageValues],
|
|
prompt_variables: Optional[dict],
|
|
) -> List[AllMessageValues]:
|
|
compiled_prompt: Optional[Union[str, list]] = None
|
|
|
|
if prompt_variables is None:
|
|
prompt_variables = {}
|
|
|
|
compiled_prompt = self._compile_prompt_helper(
|
|
prompt_template=prompt_template,
|
|
prompt_variables=prompt_variables,
|
|
)
|
|
|
|
return compiled_prompt
|
|
|
|
def _get_model_from_prompt(
|
|
self, prompt_management_client: PromptManagementClient, model: str
|
|
) -> str:
|
|
if prompt_management_client["model"] is not None:
|
|
return prompt_management_client["model"]
|
|
else:
|
|
return model.replace("{}/".format(self.integration_name), "")
|
|
|
|
|
|
prompt_manager = HumanLoopPromptManager()
|
|
|
|
|
|
class HumanloopLogger(CustomLogger):
|
|
def get_chat_completion_prompt(
|
|
self,
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
non_default_params: dict,
|
|
prompt_id: str,
|
|
prompt_variables: Optional[dict],
|
|
dynamic_callback_params: StandardCallbackDynamicParams,
|
|
) -> Tuple[str, List[AllMessageValues], dict,]:
|
|
humanloop_api_key = dynamic_callback_params.get(
|
|
"humanloop_api_key"
|
|
) or get_secret_str("HUMANLOOP_API_KEY")
|
|
|
|
if humanloop_api_key is None:
|
|
return super().get_chat_completion_prompt(
|
|
model=model,
|
|
messages=messages,
|
|
non_default_params=non_default_params,
|
|
prompt_id=prompt_id,
|
|
prompt_variables=prompt_variables,
|
|
dynamic_callback_params=dynamic_callback_params,
|
|
)
|
|
|
|
prompt_template = prompt_manager._get_prompt_from_id(
|
|
humanloop_prompt_id=prompt_id, humanloop_api_key=humanloop_api_key
|
|
)
|
|
|
|
updated_messages = prompt_manager.compile_prompt(
|
|
prompt_template=prompt_template["prompt_template"],
|
|
prompt_variables=prompt_variables,
|
|
)
|
|
|
|
prompt_template_optional_params = prompt_template["optional_params"] or {}
|
|
|
|
updated_non_default_params = {
|
|
**non_default_params,
|
|
**prompt_template_optional_params,
|
|
}
|
|
|
|
model = prompt_manager._get_model_from_prompt(
|
|
prompt_management_client=prompt_template, model=model
|
|
)
|
|
|
|
return model, updated_messages, updated_non_default_params
|