litellm-mirror/litellm/tests/test_anthropic_completion.py

185 lines
6 KiB
Python

# What is this?
## Unit tests for Anthropic Adapter
import asyncio
import os
import sys
import traceback
from dotenv import load_dotenv
import litellm.types
import litellm.types.utils
load_dotenv()
import io
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
from typing import Optional
from unittest.mock import MagicMock, patch
import pytest
import litellm
from litellm import AnthropicConfig, Router, adapter_completion
from litellm.adapters.anthropic_adapter import anthropic_adapter
from litellm.types.llms.anthropic import AnthropicResponse
def test_anthropic_completion_messages_translation():
messages = [{"role": "user", "content": "Hey, how's it going?"}]
translated_messages = AnthropicConfig().translate_anthropic_messages_to_openai(messages=messages) # type: ignore
assert translated_messages == [{"role": "user", "content": "Hey, how's it going?"}]
def test_anthropic_completion_input_translation():
data = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "Hey, how's it going?"}],
}
translated_input = anthropic_adapter.translate_completion_input_params(kwargs=data)
assert translated_input is not None
assert translated_input["model"] == "gpt-3.5-turbo"
assert translated_input["messages"] == [
{"role": "user", "content": "Hey, how's it going?"}
]
def test_anthropic_completion_input_translation_with_metadata():
"""
Tests that cost tracking works as expected with LiteLLM Proxy
LiteLLM Proxy will insert litellm_metadata for anthropic endpoints to track user_api_key and user_api_key_team_id
This test ensures that the `litellm_metadata` is not present in the translated input
It ensures that `litellm.acompletion()` will receieve metadata which is a litellm specific param
"""
data = {
"model": "gpt-3.5-turbo",
"messages": [{"role": "user", "content": "Hey, how's it going?"}],
"litellm_metadata": {
"user_api_key": "88dc28d0f030c55ed4ab77ed8faf098196cb1c05df778539800c9f1243fe6b4b",
"user_api_key_alias": None,
"user_api_end_user_max_budget": None,
"litellm_api_version": "1.40.19",
"global_max_parallel_requests": None,
"user_api_key_user_id": "default_user_id",
"user_api_key_org_id": None,
"user_api_key_team_id": None,
"user_api_key_team_alias": None,
"user_api_key_team_max_budget": None,
"user_api_key_team_spend": None,
"user_api_key_spend": 0.0,
"user_api_key_max_budget": None,
"user_api_key_metadata": {},
},
}
translated_input = anthropic_adapter.translate_completion_input_params(kwargs=data)
assert "litellm_metadata" not in translated_input
assert "metadata" in translated_input
assert translated_input["metadata"] == data["litellm_metadata"]
def streaming_format_tests(chunk: dict, idx: int):
"""
1st chunk - chunk.get("type") == "message_start"
2nd chunk - chunk.get("type") == "content_block_start"
3rd chunk - chunk.get("type") == "content_block_delta"
"""
if idx == 0:
assert chunk.get("type") == "message_start"
elif idx == 1:
assert chunk.get("type") == "content_block_start"
elif idx == 2:
assert chunk.get("type") == "content_block_delta"
@pytest.mark.parametrize("stream", [True]) # False
def test_anthropic_completion_e2e(stream):
litellm.set_verbose = True
litellm.adapters = [{"id": "anthropic", "adapter": anthropic_adapter}]
messages = [{"role": "user", "content": "Hey, how's it going?"}]
response = adapter_completion(
model="gpt-3.5-turbo",
messages=messages,
adapter_id="anthropic",
mock_response="This is a fake call",
stream=stream,
)
print("Response: {}".format(response))
assert response is not None
if stream is False:
assert isinstance(response, AnthropicResponse)
else:
"""
- ensure finish reason is returned
- assert content block is started and stopped
- ensure last chunk is 'message_stop'
"""
assert isinstance(response, litellm.types.utils.AdapterCompletionStreamWrapper)
finish_reason: Optional[str] = None
message_stop_received = False
content_block_started = False
content_block_finished = False
for idx, chunk in enumerate(response):
print(chunk)
streaming_format_tests(chunk=chunk, idx=idx)
if chunk.get("delta", {}).get("stop_reason") is not None:
finish_reason = chunk.get("delta", {}).get("stop_reason")
if chunk.get("type") == "message_stop":
message_stop_received = True
if chunk.get("type") == "content_block_stop":
content_block_finished = True
if chunk.get("type") == "content_block_start":
content_block_started = True
assert content_block_started and content_block_finished
assert finish_reason is not None
assert message_stop_received is True
@pytest.mark.asyncio
async def test_anthropic_router_completion_e2e():
litellm.set_verbose = True
litellm.adapters = [{"id": "anthropic", "adapter": anthropic_adapter}]
router = Router(
model_list=[
{
"model_name": "claude-3-5-sonnet-20240620",
"litellm_params": {
"model": "gpt-3.5-turbo",
"mock_response": "hi this is macintosh.",
},
}
]
)
messages = [{"role": "user", "content": "Hey, how's it going?"}]
response = await router.aadapter_completion(
model="claude-3-5-sonnet-20240620",
messages=messages,
adapter_id="anthropic",
mock_response="This is a fake call",
)
print("Response: {}".format(response))
assert response is not None
assert isinstance(response, AnthropicResponse)
assert response.model == "gpt-3.5-turbo"