litellm-mirror/litellm/llms/anthropic.py
2023-09-13 19:22:38 -07:00

138 lines
4.4 KiB
Python

import os
import json
from enum import Enum
import requests
import time
from typing import Callable
from litellm.utils import ModelResponse
class AnthropicConstants(Enum):
HUMAN_PROMPT = "\n\nHuman:"
AI_PROMPT = "\n\nAssistant:"
class AnthropicError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
# makes headers for API call
def validate_environment(api_key):
if api_key is None:
raise ValueError(
"Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params"
)
headers = {
"accept": "application/json",
"anthropic-version": "2023-06-01",
"content-type": "application/json",
"x-api-key": api_key,
}
return headers
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
):
headers = validate_environment(api_key)
prompt = f"{AnthropicConstants.HUMAN_PROMPT.value}"
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += (
f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
)
else:
prompt += (
f"{AnthropicConstants.AI_PROMPT.value}{message['content']}"
)
else:
prompt += f"{AnthropicConstants.HUMAN_PROMPT.value}{message['content']}"
prompt += f"{AnthropicConstants.AI_PROMPT.value}"
if "max_tokens" in optional_params and optional_params["max_tokens"] != float("inf"):
max_tokens = optional_params["max_tokens"]
else:
max_tokens = 256 # required anthropic param, default to 256 if user does not provide an input
data = {
"model": model,
"prompt": prompt,
"max_tokens_to_sample": max_tokens,
**optional_params,
}
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key=api_key,
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
if "stream" in optional_params and optional_params["stream"] == True:
response = requests.post(
"https://api.anthropic.com/v1/complete",
headers=headers,
data=json.dumps(data),
stream=optional_params["stream"],
)
return response.iter_lines()
else:
response = requests.post(
"https://api.anthropic.com/v1/complete", headers=headers, data=json.dumps(data)
)
## LOGGING
logging_obj.post_call(
input=prompt,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
try:
completion_response = response.json()
except:
raise AnthropicError(
message=response.text, status_code=response.status_code
)
if "error" in completion_response:
raise AnthropicError(
message=str(completion_response["error"]),
status_code=response.status_code,
)
else:
model_response["choices"][0]["message"]["content"] = completion_response[
"completion"
]
model_response.choices[0].finish_reason = completion_response["stop_reason"]
## CALCULATING USAGE
prompt_tokens = len(
encoding.encode(prompt)
) ##[TODO] use the anthropic tokenizer here
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"]["content"])
) ##[TODO] use the anthropic tokenizer here
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass