mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-24 18:24:20 +00:00
627 lines
23 KiB
Python
627 lines
23 KiB
Python
import json, copy, types
|
|
import os
|
|
from enum import Enum
|
|
import time
|
|
from typing import Callable, Optional
|
|
import litellm
|
|
from litellm.utils import ModelResponse, get_secret, Usage
|
|
from .prompt_templates.factory import prompt_factory, custom_prompt
|
|
import httpx
|
|
|
|
class BedrockError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(method="POST", url="https://us-west-2.console.aws.amazon.com/bedrock")
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
class AmazonTitanConfig():
|
|
"""
|
|
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=titan-text-express-v1
|
|
|
|
Supported Params for the Amazon Titan models:
|
|
|
|
- `maxTokenCount` (integer) max tokens,
|
|
- `stopSequences` (string[]) list of stop sequence strings
|
|
- `temperature` (float) temperature for model,
|
|
- `topP` (int) top p for model
|
|
"""
|
|
maxTokenCount: Optional[int]=None
|
|
stopSequences: Optional[list]=None
|
|
temperature: Optional[float]=None
|
|
topP: Optional[int]=None
|
|
|
|
def __init__(self,
|
|
maxTokenCount: Optional[int]=None,
|
|
stopSequences: Optional[list]=None,
|
|
temperature: Optional[float]=None,
|
|
topP: Optional[int]=None) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != 'self' and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {k: v for k, v in cls.__dict__.items()
|
|
if not k.startswith('__')
|
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
|
and v is not None}
|
|
|
|
class AmazonAnthropicConfig():
|
|
"""
|
|
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=claude
|
|
|
|
Supported Params for the Amazon / Anthropic models:
|
|
|
|
- `max_tokens_to_sample` (integer) max tokens,
|
|
- `temperature` (float) model temperature,
|
|
- `top_k` (integer) top k,
|
|
- `top_p` (integer) top p,
|
|
- `stop_sequences` (string[]) list of stop sequences - e.g. ["\\n\\nHuman:"],
|
|
- `anthropic_version` (string) version of anthropic for bedrock - e.g. "bedrock-2023-05-31"
|
|
"""
|
|
max_tokens_to_sample: Optional[int]=litellm.max_tokens
|
|
stop_sequences: Optional[list]=None
|
|
temperature: Optional[float]=None
|
|
top_k: Optional[int]=None
|
|
top_p: Optional[int]=None
|
|
anthropic_version: Optional[str]=None
|
|
|
|
def __init__(self,
|
|
max_tokens_to_sample: Optional[int]=None,
|
|
stop_sequences: Optional[list]=None,
|
|
temperature: Optional[float]=None,
|
|
top_k: Optional[int]=None,
|
|
top_p: Optional[int]=None,
|
|
anthropic_version: Optional[str]=None) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != 'self' and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {k: v for k, v in cls.__dict__.items()
|
|
if not k.startswith('__')
|
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
|
and v is not None}
|
|
|
|
class AmazonCohereConfig():
|
|
"""
|
|
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=command
|
|
|
|
Supported Params for the Amazon / Cohere models:
|
|
|
|
- `max_tokens` (integer) max tokens,
|
|
- `temperature` (float) model temperature,
|
|
- `return_likelihood` (string) n/a
|
|
"""
|
|
max_tokens: Optional[int]=None
|
|
temperature: Optional[float]=None
|
|
return_likelihood: Optional[str]=None
|
|
|
|
def __init__(self,
|
|
max_tokens: Optional[int]=None,
|
|
temperature: Optional[float]=None,
|
|
return_likelihood: Optional[str]=None) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != 'self' and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {k: v for k, v in cls.__dict__.items()
|
|
if not k.startswith('__')
|
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
|
and v is not None}
|
|
|
|
class AmazonAI21Config():
|
|
"""
|
|
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=j2-ultra
|
|
|
|
Supported Params for the Amazon / AI21 models:
|
|
|
|
- `maxTokens` (int32): The maximum number of tokens to generate per result. Optional, default is 16. If no `stopSequences` are given, generation stops after producing `maxTokens`.
|
|
|
|
- `temperature` (float): Modifies the distribution from which tokens are sampled. Optional, default is 0.7. A value of 0 essentially disables sampling and results in greedy decoding.
|
|
|
|
- `topP` (float): Used for sampling tokens from the corresponding top percentile of probability mass. Optional, default is 1. For instance, a value of 0.9 considers only tokens comprising the top 90% probability mass.
|
|
|
|
- `stopSequences` (array of strings): Stops decoding if any of the input strings is generated. Optional.
|
|
|
|
- `frequencyPenalty` (object): Placeholder for frequency penalty object.
|
|
|
|
- `presencePenalty` (object): Placeholder for presence penalty object.
|
|
|
|
- `countPenalty` (object): Placeholder for count penalty object.
|
|
"""
|
|
maxTokens: Optional[int]=None
|
|
temperature: Optional[float]=None
|
|
topP: Optional[float]=None
|
|
stopSequences: Optional[list]=None
|
|
frequencePenalty: Optional[dict]=None
|
|
presencePenalty: Optional[dict]=None
|
|
countPenalty: Optional[dict]=None
|
|
|
|
def __init__(self,
|
|
maxTokens: Optional[int]=None,
|
|
temperature: Optional[float]=None,
|
|
topP: Optional[float]=None,
|
|
stopSequences: Optional[list]=None,
|
|
frequencePenalty: Optional[dict]=None,
|
|
presencePenalty: Optional[dict]=None,
|
|
countPenalty: Optional[dict]=None) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != 'self' and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {k: v for k, v in cls.__dict__.items()
|
|
if not k.startswith('__')
|
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
|
and v is not None}
|
|
|
|
class AnthropicConstants(Enum):
|
|
HUMAN_PROMPT = "\n\nHuman: "
|
|
AI_PROMPT = "\n\nAssistant: "
|
|
|
|
class AmazonLlamaConfig():
|
|
"""
|
|
Reference: https://us-west-2.console.aws.amazon.com/bedrock/home?region=us-west-2#/providers?model=meta.llama2-13b-chat-v1
|
|
|
|
Supported Params for the Amazon / Meta Llama models:
|
|
|
|
- `max_gen_len` (integer) max tokens,
|
|
- `temperature` (float) temperature for model,
|
|
- `top_p` (float) top p for model
|
|
"""
|
|
max_gen_len: Optional[int]=None
|
|
temperature: Optional[float]=None
|
|
topP: Optional[float]=None
|
|
|
|
def __init__(self,
|
|
maxTokenCount: Optional[int]=None,
|
|
temperature: Optional[float]=None,
|
|
topP: Optional[int]=None) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != 'self' and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {k: v for k, v in cls.__dict__.items()
|
|
if not k.startswith('__')
|
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
|
and v is not None}
|
|
|
|
|
|
def init_bedrock_client(
|
|
region_name = None,
|
|
aws_access_key_id = None,
|
|
aws_secret_access_key = None,
|
|
aws_region_name=None,
|
|
aws_bedrock_runtime_endpoint=None,
|
|
):
|
|
|
|
# check for custom AWS_REGION_NAME and use it if not passed to init_bedrock_client
|
|
litellm_aws_region_name = get_secret("AWS_REGION_NAME")
|
|
standard_aws_region_name = get_secret("AWS_REGION")
|
|
if region_name:
|
|
pass
|
|
elif aws_region_name:
|
|
region_name = aws_region_name
|
|
elif litellm_aws_region_name:
|
|
region_name = litellm_aws_region_name
|
|
elif standard_aws_region_name:
|
|
region_name = standard_aws_region_name
|
|
else:
|
|
raise BedrockError(message="AWS region not set: set AWS_REGION_NAME or AWS_REGION env variable or in .env file", status_code=401)
|
|
|
|
# check for custom AWS_BEDROCK_RUNTIME_ENDPOINT and use it if not passed to init_bedrock_client
|
|
env_aws_bedrock_runtime_endpoint = get_secret("AWS_BEDROCK_RUNTIME_ENDPOINT")
|
|
if aws_bedrock_runtime_endpoint:
|
|
endpoint_url = aws_bedrock_runtime_endpoint
|
|
elif env_aws_bedrock_runtime_endpoint:
|
|
endpoint_url = env_aws_bedrock_runtime_endpoint
|
|
else:
|
|
endpoint_url = f'https://bedrock-runtime.{region_name}.amazonaws.com'
|
|
|
|
import boto3
|
|
if aws_access_key_id != None:
|
|
# uses auth params passed to completion
|
|
# aws_access_key_id is not None, assume user is trying to auth using litellm.completion
|
|
|
|
client = boto3.client(
|
|
service_name="bedrock-runtime",
|
|
aws_access_key_id=aws_access_key_id,
|
|
aws_secret_access_key=aws_secret_access_key,
|
|
region_name=region_name,
|
|
endpoint_url=endpoint_url,
|
|
)
|
|
else:
|
|
# aws_access_key_id is None, assume user is trying to auth using env variables
|
|
# boto3 automatically reads env variables
|
|
|
|
client = boto3.client(
|
|
service_name="bedrock-runtime",
|
|
region_name=region_name,
|
|
endpoint_url=endpoint_url,
|
|
)
|
|
|
|
return client
|
|
|
|
|
|
def convert_messages_to_prompt(model, messages, provider, custom_prompt_dict):
|
|
# handle anthropic prompts using anthropic constants
|
|
if provider == "anthropic":
|
|
if model in custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details["roles"],
|
|
initial_prompt_value=model_prompt_details["initial_prompt_value"],
|
|
final_prompt_value=model_prompt_details["final_prompt_value"],
|
|
messages=messages
|
|
)
|
|
else:
|
|
prompt = prompt_factory(model=model, messages=messages, custom_llm_provider="anthropic")
|
|
else:
|
|
prompt = ""
|
|
for message in messages:
|
|
if "role" in message:
|
|
if message["role"] == "user":
|
|
prompt += (
|
|
f"{message['content']}"
|
|
)
|
|
else:
|
|
prompt += (
|
|
f"{message['content']}"
|
|
)
|
|
else:
|
|
prompt += f"{message['content']}"
|
|
return prompt
|
|
|
|
|
|
"""
|
|
BEDROCK AUTH Keys/Vars
|
|
os.environ['AWS_ACCESS_KEY_ID'] = ""
|
|
os.environ['AWS_SECRET_ACCESS_KEY'] = ""
|
|
"""
|
|
|
|
|
|
# set os.environ['AWS_REGION_NAME'] = <your-region_name>
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
logging_obj,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
):
|
|
exception_mapping_worked = False
|
|
try:
|
|
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
|
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
|
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
|
aws_region_name = optional_params.pop("aws_region_name", None)
|
|
|
|
# use passed in BedrockRuntime.Client if provided, otherwise create a new one
|
|
client = optional_params.pop(
|
|
"aws_bedrock_client",
|
|
# only pass variables that are not None
|
|
init_bedrock_client(
|
|
aws_access_key_id=aws_access_key_id,
|
|
aws_secret_access_key=aws_secret_access_key,
|
|
aws_region_name=aws_region_name,
|
|
),
|
|
)
|
|
|
|
model = model
|
|
provider = model.split(".")[0]
|
|
prompt = convert_messages_to_prompt(model, messages, provider, custom_prompt_dict)
|
|
inference_params = copy.deepcopy(optional_params)
|
|
stream = inference_params.pop("stream", False)
|
|
if provider == "anthropic":
|
|
## LOAD CONFIG
|
|
config = litellm.AmazonAnthropicConfig.get_config()
|
|
for k, v in config.items():
|
|
if k not in inference_params: # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
inference_params[k] = v
|
|
data = json.dumps({
|
|
"prompt": prompt,
|
|
**inference_params
|
|
})
|
|
elif provider == "ai21":
|
|
## LOAD CONFIG
|
|
config = litellm.AmazonAI21Config.get_config()
|
|
for k, v in config.items():
|
|
if k not in inference_params: # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
inference_params[k] = v
|
|
|
|
data = json.dumps({
|
|
"prompt": prompt,
|
|
**inference_params
|
|
})
|
|
elif provider == "cohere":
|
|
## LOAD CONFIG
|
|
config = litellm.AmazonCohereConfig.get_config()
|
|
for k, v in config.items():
|
|
if k not in inference_params: # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
inference_params[k] = v
|
|
if optional_params.get("stream", False) == True:
|
|
inference_params["stream"] = True # cohere requires stream = True in inference params
|
|
data = json.dumps({
|
|
"prompt": prompt,
|
|
**inference_params
|
|
})
|
|
elif provider == "meta":
|
|
## LOAD CONFIG
|
|
config = litellm.AmazonLlamaConfig.get_config()
|
|
for k, v in config.items():
|
|
if k not in inference_params: # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
inference_params[k] = v
|
|
data = json.dumps({
|
|
"prompt": prompt,
|
|
**inference_params
|
|
})
|
|
elif provider == "amazon": # amazon titan
|
|
## LOAD CONFIG
|
|
config = litellm.AmazonTitanConfig.get_config()
|
|
for k, v in config.items():
|
|
if k not in inference_params: # completion(top_k=3) > amazon_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
inference_params[k] = v
|
|
|
|
data = json.dumps({
|
|
"inputText": prompt,
|
|
"textGenerationConfig": inference_params,
|
|
})
|
|
|
|
## COMPLETION CALL
|
|
accept = 'application/json'
|
|
contentType = 'application/json'
|
|
if stream == True:
|
|
if provider == "ai21":
|
|
## LOGGING
|
|
request_str = f"""
|
|
response = client.invoke_model(
|
|
body={data},
|
|
modelId={model},
|
|
accept=accept,
|
|
contentType=contentType
|
|
)
|
|
"""
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key="",
|
|
additional_args={"complete_input_dict": data, "request_str": request_str},
|
|
)
|
|
|
|
response = client.invoke_model(
|
|
body=data,
|
|
modelId=model,
|
|
accept=accept,
|
|
contentType=contentType
|
|
)
|
|
|
|
response = response.get('body').read()
|
|
return response
|
|
else:
|
|
## LOGGING
|
|
request_str = f"""
|
|
response = client.invoke_model_with_response_stream(
|
|
body={data},
|
|
modelId={model},
|
|
accept=accept,
|
|
contentType=contentType
|
|
)
|
|
"""
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key="",
|
|
additional_args={"complete_input_dict": data, "request_str": request_str},
|
|
)
|
|
|
|
response = client.invoke_model_with_response_stream(
|
|
body=data,
|
|
modelId=model,
|
|
accept=accept,
|
|
contentType=contentType
|
|
)
|
|
response = response.get('body')
|
|
return response
|
|
try:
|
|
## LOGGING
|
|
request_str = f"""
|
|
response = client.invoke_model(
|
|
body={data},
|
|
modelId={model},
|
|
accept=accept,
|
|
contentType=contentType
|
|
)
|
|
"""
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key="",
|
|
additional_args={"complete_input_dict": data, "request_str": request_str},
|
|
)
|
|
response = client.invoke_model(
|
|
body=data,
|
|
modelId=model,
|
|
accept=accept,
|
|
contentType=contentType
|
|
)
|
|
except Exception as e:
|
|
raise BedrockError(status_code=500, message=str(e))
|
|
|
|
response_body = json.loads(response.get('body').read())
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key="",
|
|
original_response=response_body,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
print_verbose(f"raw model_response: {response}")
|
|
## RESPONSE OBJECT
|
|
outputText = "default"
|
|
if provider == "ai21":
|
|
outputText = response_body.get('completions')[0].get('data').get('text')
|
|
elif provider == "anthropic":
|
|
outputText = response_body['completion']
|
|
model_response["finish_reason"] = response_body["stop_reason"]
|
|
elif provider == "cohere":
|
|
outputText = response_body["generations"][0]["text"]
|
|
elif provider == "meta":
|
|
outputText = response_body["generation"]
|
|
else: # amazon titan
|
|
outputText = response_body.get('results')[0].get('outputText')
|
|
|
|
response_metadata = response.get("ResponseMetadata", {})
|
|
if response_metadata.get("HTTPStatusCode", 500) >= 400:
|
|
raise BedrockError(
|
|
message=outputText,
|
|
status_code=response_metadata.get("HTTPStatusCode", 500),
|
|
)
|
|
else:
|
|
try:
|
|
if len(outputText) > 0:
|
|
model_response["choices"][0]["message"]["content"] = outputText
|
|
except:
|
|
raise BedrockError(message=json.dumps(outputText), status_code=response_metadata.get("HTTPStatusCode", 500))
|
|
|
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
|
prompt_tokens = len(
|
|
encoding.encode(prompt)
|
|
)
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
|
)
|
|
|
|
model_response["created"] = int(time.time())
|
|
model_response["model"] = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens = prompt_tokens + completion_tokens
|
|
)
|
|
model_response.usage = usage
|
|
return model_response
|
|
except BedrockError as e:
|
|
exception_mapping_worked = True
|
|
raise e
|
|
except Exception as e:
|
|
if exception_mapping_worked:
|
|
raise e
|
|
else:
|
|
import traceback
|
|
raise BedrockError(status_code=500, message=traceback.format_exc())
|
|
|
|
def _embedding_func_single(
|
|
model: str,
|
|
input: str,
|
|
optional_params=None,
|
|
encoding=None,
|
|
):
|
|
# logic for parsing in - calling - parsing out model embedding calls
|
|
# pop aws_secret_access_key, aws_access_key_id, aws_region_name from kwargs, since completion calls fail with them
|
|
aws_secret_access_key = optional_params.pop("aws_secret_access_key", None)
|
|
aws_access_key_id = optional_params.pop("aws_access_key_id", None)
|
|
aws_region_name = optional_params.pop("aws_region_name", None)
|
|
|
|
# use passed in BedrockRuntime.Client if provided, otherwise create a new one
|
|
client = optional_params.pop(
|
|
"aws_bedrock_client",
|
|
# only pass variables that are not None
|
|
init_bedrock_client(
|
|
aws_access_key_id=aws_access_key_id,
|
|
aws_secret_access_key=aws_secret_access_key,
|
|
aws_region_name=aws_region_name,
|
|
),
|
|
)
|
|
|
|
input = input.replace(os.linesep, " ")
|
|
body = json.dumps({"inputText": input})
|
|
try:
|
|
response = client.invoke_model(
|
|
body=body,
|
|
modelId=model,
|
|
accept="application/json",
|
|
contentType="application/json",
|
|
)
|
|
response_body = json.loads(response.get("body").read())
|
|
return response_body.get("embedding")
|
|
except Exception as e:
|
|
raise BedrockError(message=f"Embedding Error with model {model}: {e}", status_code=500)
|
|
|
|
def embedding(
|
|
model: str,
|
|
input: list,
|
|
api_key: Optional[str] = None,
|
|
logging_obj=None,
|
|
model_response=None,
|
|
optional_params=None,
|
|
encoding=None,
|
|
):
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": {"model": model,
|
|
"texts": input}},
|
|
)
|
|
|
|
## Embedding Call
|
|
embeddings = [_embedding_func_single(model, i, optional_params) for i in input]
|
|
|
|
|
|
## Populate OpenAI compliant dictionary
|
|
embedding_response = []
|
|
for idx, embedding in enumerate(embeddings):
|
|
embedding_response.append(
|
|
{
|
|
"object": "embedding",
|
|
"index": idx,
|
|
"embedding": embedding,
|
|
}
|
|
)
|
|
model_response["object"] = "list"
|
|
model_response["data"] = embedding_response
|
|
model_response["model"] = model
|
|
input_tokens = 0
|
|
|
|
input_str = "".join(input)
|
|
|
|
input_tokens+=len(encoding.encode(input_str))
|
|
|
|
usage = Usage(
|
|
prompt_tokens=input_tokens,
|
|
completion_tokens=0,
|
|
total_tokens=input_tokens + 0
|
|
)
|
|
model_response.usage = usage
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=input,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": {"model": model,
|
|
"texts": input}},
|
|
original_response=embeddings,
|
|
)
|
|
|
|
return model_response
|