mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
164 lines
No EOL
5.6 KiB
Python
164 lines
No EOL
5.6 KiB
Python
import os, types
|
|
import json
|
|
from enum import Enum
|
|
import requests
|
|
import time, traceback
|
|
from typing import Callable, Optional, List
|
|
from litellm.utils import ModelResponse, Choices, Message, Usage
|
|
import litellm
|
|
|
|
class MaritalkError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
class MaritTalkConfig():
|
|
"""
|
|
The class `MaritTalkConfig` provides configuration for the MaritTalk's API interface. Here are the parameters:
|
|
|
|
- `max_tokens` (integer): Maximum number of tokens the model will generate as part of the response. Default is 1.
|
|
|
|
- `model` (string): The model used for conversation. Default is 'maritalk'.
|
|
|
|
- `do_sample` (boolean): If set to True, the API will generate a response using sampling. Default is True.
|
|
|
|
- `temperature` (number): A non-negative float controlling the randomness in generation. Lower temperatures result in less random generations. Default is 0.7.
|
|
|
|
- `top_p` (number): Selection threshold for token inclusion based on cumulative probability. Default is 0.95.
|
|
|
|
- `repetition_penalty` (number): Penalty for repetition in the generated conversation. Default is 1.
|
|
|
|
- `stopping_tokens` (list of string): List of tokens where the conversation can be stopped/stopped.
|
|
"""
|
|
max_tokens: Optional[int] = None
|
|
model: Optional[str] = None
|
|
do_sample: Optional[bool] = None
|
|
temperature: Optional[float] = None
|
|
top_p: Optional[float] = None
|
|
repetition_penalty: Optional[float] = None
|
|
stopping_tokens: Optional[List[str]] = None
|
|
|
|
def __init__(self,
|
|
max_tokens: Optional[int]=None,
|
|
model: Optional[str] = None,
|
|
do_sample: Optional[bool] = None,
|
|
temperature: Optional[float] = None,
|
|
top_p: Optional[float] = None,
|
|
repetition_penalty: Optional[float] = None,
|
|
stopping_tokens: Optional[List[str]] = None) -> None:
|
|
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != 'self' and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {k: v for k, v in cls.__dict__.items()
|
|
if not k.startswith('__')
|
|
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
|
|
and v is not None}
|
|
|
|
def validate_environment(api_key):
|
|
headers = {
|
|
"accept": "application/json",
|
|
"content-type": "application/json",
|
|
}
|
|
if api_key:
|
|
headers["Authorization"] = f"Key {api_key}"
|
|
return headers
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
):
|
|
headers = validate_environment(api_key)
|
|
completion_url = api_base
|
|
model = model
|
|
|
|
## Load Config
|
|
config=litellm.MaritTalkConfig.get_config()
|
|
for k, v in config.items():
|
|
if k not in optional_params: # completion(top_k=3) > maritalk_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
data = {
|
|
"messages": messages,
|
|
**optional_params,
|
|
}
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
## COMPLETION CALL
|
|
response = requests.post(
|
|
completion_url, headers=headers, data=json.dumps(data), stream=optional_params["stream"] if "stream" in optional_params else False
|
|
)
|
|
if "stream" in optional_params and optional_params["stream"] == True:
|
|
return response.iter_lines()
|
|
else:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
original_response=response.text,
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
print_verbose(f"raw model_response: {response.text}")
|
|
## RESPONSE OBJECT
|
|
completion_response = response.json()
|
|
if "error" in completion_response:
|
|
raise MaritalkError(
|
|
message=completion_response["error"],
|
|
status_code=response.status_code,
|
|
)
|
|
else:
|
|
try:
|
|
if len(completion_response["answer"]) > 0:
|
|
model_response["choices"][0]["message"]["content"] = completion_response["answer"]
|
|
except Exception as e:
|
|
raise MaritalkError(message=response.text, status_code=response.status_code)
|
|
|
|
## CALCULATING USAGE
|
|
prompt = "".join(m["content"] for m in messages)
|
|
prompt_tokens = len(
|
|
encoding.encode(prompt)
|
|
)
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
|
)
|
|
|
|
model_response["created"] = int(time.time())
|
|
model_response["model"] = model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens
|
|
)
|
|
model_response.usage = usage
|
|
return model_response
|
|
|
|
def embedding(
|
|
model: str,
|
|
input: list,
|
|
api_key: Optional[str] = None,
|
|
logging_obj=None,
|
|
model_response=None,
|
|
encoding=None,
|
|
):
|
|
pass |