mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 11:43:54 +00:00
* fix(factory.py): skip empty text blocks for bedrock user messages Fixes https://github.com/BerriAI/litellm/issues/7169 * Add support for Gemini 2.0 GoogleSearch tool (#7257) * Add support for google_search tool in gemini 2.0 * Add/modify tests * Fix grounding check * Remove 2.0 grounding test; exclude experimental model in VERTEX_MODELS_TO_NOT_TEST * Swap order of tools * DFix formatting * fix(get_api_base.py): return api base in streaming response Fixes https://github.com/BerriAI/litellm/issues/7249 Closes https://github.com/BerriAI/litellm/pull/7250 * fix(cost_calculator.py): only set base model to model if not none Fixes https://github.com/BerriAI/litellm/issues/7223 * fix(cost_calculator.py): enforce stricter order when picking model for cost calculation * fix(cost_calculator.py): fix '_select_model_name_for_cost_calc' to return model name with region name prefix if provided * fix(utils.py): fix 'get_model_info()' to handle edge case where model name starts with custom llm provider AND custom llm provider is given * fix(cost_calculator.py): handle `custom_llm_provider-` scenario * fix(cost_calculator.py): e2e working tts cost tracking ensures initial message is passed in, to cost calculator * fix(factory.py): suppress linting errors * fix(cost_calculator.py): strip llm provider from model name after selecting cost calc model * fix(litellm_logging.py): store initial request in 'input' field + accept base_model to be passed in litellm_params directly * test: handle none env var value in flaky test * fix(litellm_logging.py): fix linting errors --------- Co-authored-by: Sam B <samlingx@gmail.com>
160 lines
5.1 KiB
Python
160 lines
5.1 KiB
Python
# What is this?
|
|
## Unit testing for the 'get_model_info()' function
|
|
import os
|
|
import sys
|
|
import traceback
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import pytest
|
|
|
|
import litellm
|
|
from litellm import get_model_info
|
|
from unittest.mock import AsyncMock, MagicMock, patch
|
|
|
|
|
|
def test_get_model_info_simple_model_name():
|
|
"""
|
|
tests if model name given, and model exists in model info - the object is returned
|
|
"""
|
|
model = "claude-3-opus-20240229"
|
|
litellm.get_model_info(model)
|
|
|
|
|
|
def test_get_model_info_custom_llm_with_model_name():
|
|
"""
|
|
Tests if {custom_llm_provider}/{model_name} name given, and model exists in model info, the object is returned
|
|
"""
|
|
model = "anthropic/claude-3-opus-20240229"
|
|
litellm.get_model_info(model)
|
|
|
|
|
|
def test_get_model_info_custom_llm_with_same_name_vllm():
|
|
"""
|
|
Tests if {custom_llm_provider}/{model_name} name given, and model exists in model info, the object is returned
|
|
"""
|
|
model = "command-r-plus"
|
|
provider = "openai" # vllm is openai-compatible
|
|
try:
|
|
model_info = litellm.get_model_info(model, custom_llm_provider=provider)
|
|
print("model_info", model_info)
|
|
pytest.fail("Expected get model info to fail for an unmapped model/provider")
|
|
except Exception:
|
|
pass
|
|
|
|
|
|
def test_get_model_info_shows_correct_supports_vision():
|
|
info = litellm.get_model_info("gemini/gemini-1.5-flash")
|
|
print("info", info)
|
|
assert info["supports_vision"] is True
|
|
|
|
|
|
def test_get_model_info_shows_assistant_prefill():
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
info = litellm.get_model_info("deepseek/deepseek-chat")
|
|
print("info", info)
|
|
assert info.get("supports_assistant_prefill") is True
|
|
|
|
|
|
def test_get_model_info_shows_supports_prompt_caching():
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
info = litellm.get_model_info("deepseek/deepseek-chat")
|
|
print("info", info)
|
|
assert info.get("supports_prompt_caching") is True
|
|
|
|
|
|
def test_get_model_info_finetuned_models():
|
|
info = litellm.get_model_info("ft:gpt-3.5-turbo:my-org:custom_suffix:id")
|
|
print("info", info)
|
|
assert info["input_cost_per_token"] == 0.000003
|
|
|
|
|
|
def test_get_model_info_gemini_pro():
|
|
info = litellm.get_model_info("gemini-1.5-pro-002")
|
|
print("info", info)
|
|
assert info["key"] == "gemini-1.5-pro-002"
|
|
|
|
|
|
def test_get_model_info_ollama_chat():
|
|
from litellm.llms.ollama.completion.transformation import OllamaConfig
|
|
|
|
with patch.object(
|
|
litellm.module_level_client,
|
|
"post",
|
|
return_value=MagicMock(
|
|
json=lambda: {
|
|
"model_info": {"llama.context_length": 32768},
|
|
"template": "tools",
|
|
}
|
|
),
|
|
) as mock_client:
|
|
info = OllamaConfig().get_model_info("mistral")
|
|
assert info["supports_function_calling"] is True
|
|
|
|
info = get_model_info("ollama/mistral")
|
|
print("info", info)
|
|
assert info["supports_function_calling"] is True
|
|
|
|
mock_client.assert_called()
|
|
|
|
print(mock_client.call_args.kwargs)
|
|
|
|
assert mock_client.call_args.kwargs["json"]["name"] == "mistral"
|
|
|
|
|
|
def test_get_model_info_gemini():
|
|
"""
|
|
Tests if ALL gemini models have 'tpm' and 'rpm' in the model info
|
|
"""
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
model_map = litellm.model_cost
|
|
for model, info in model_map.items():
|
|
if model.startswith("gemini/") and not "gemma" in model:
|
|
assert info.get("tpm") is not None, f"{model} does not have tpm"
|
|
assert info.get("rpm") is not None, f"{model} does not have rpm"
|
|
|
|
|
|
def test_get_model_info_bedrock_region():
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
args = {
|
|
"model": "us.anthropic.claude-3-5-sonnet-20241022-v2:0",
|
|
"custom_llm_provider": "bedrock",
|
|
}
|
|
litellm.model_cost.pop("us.anthropic.claude-3-5-sonnet-20241022-v2:0", None)
|
|
info = litellm.get_model_info(**args)
|
|
print("info", info)
|
|
assert info["key"] == "anthropic.claude-3-5-sonnet-20241022-v2:0"
|
|
assert info["litellm_provider"] == "bedrock"
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model",
|
|
[
|
|
"ft:gpt-3.5-turbo:my-org:custom_suffix:id",
|
|
"ft:gpt-4-0613:my-org:custom_suffix:id",
|
|
"ft:davinci-002:my-org:custom_suffix:id",
|
|
"ft:gpt-4-0613:my-org:custom_suffix:id",
|
|
"ft:babbage-002:my-org:custom_suffix:id",
|
|
"gpt-35-turbo",
|
|
"ada",
|
|
],
|
|
)
|
|
def test_get_model_info_completion_cost_unit_tests(model):
|
|
info = litellm.get_model_info(model)
|
|
print("info", info)
|
|
|
|
|
|
def test_get_model_info_ft_model_with_provider_prefix():
|
|
args = {
|
|
"model": "openai/ft:gpt-3.5-turbo:my-org:custom_suffix:id",
|
|
"custom_llm_provider": "openai",
|
|
}
|
|
info = litellm.get_model_info(**args)
|
|
print("info", info)
|
|
assert info["key"] == "ft:gpt-3.5-turbo"
|