mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
162 lines
4.8 KiB
Python
162 lines
4.8 KiB
Python
"""Abstraction function for OpenAI's realtime API"""
|
|
|
|
from typing import Any, Optional
|
|
|
|
import litellm
|
|
from litellm import get_llm_provider
|
|
from litellm.secret_managers.main import get_secret_str
|
|
from litellm.types.router import GenericLiteLLMParams
|
|
|
|
from ..litellm_core_utils.litellm_logging import Logging as LiteLLMLogging
|
|
from ..llms.azure.realtime.handler import AzureOpenAIRealtime
|
|
from ..llms.openai.realtime.handler import OpenAIRealtime
|
|
from ..utils import client as wrapper_client
|
|
|
|
azure_realtime = AzureOpenAIRealtime()
|
|
openai_realtime = OpenAIRealtime()
|
|
|
|
|
|
@wrapper_client
|
|
async def _arealtime(
|
|
model: str,
|
|
websocket: Any, # fastapi websocket
|
|
api_base: Optional[str] = None,
|
|
api_key: Optional[str] = None,
|
|
api_version: Optional[str] = None,
|
|
azure_ad_token: Optional[str] = None,
|
|
client: Optional[Any] = None,
|
|
timeout: Optional[float] = None,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Private function to handle the realtime API call.
|
|
|
|
For PROXY use only.
|
|
"""
|
|
litellm_logging_obj: LiteLLMLogging = kwargs.get("litellm_logging_obj") # type: ignore
|
|
litellm_call_id: Optional[str] = kwargs.get("litellm_call_id", None)
|
|
proxy_server_request = kwargs.get("proxy_server_request", None)
|
|
model_info = kwargs.get("model_info", None)
|
|
metadata = kwargs.get("metadata", {})
|
|
user = kwargs.get("user", None)
|
|
litellm_params = GenericLiteLLMParams(**kwargs)
|
|
|
|
model, _custom_llm_provider, dynamic_api_key, dynamic_api_base = get_llm_provider(
|
|
model=model,
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
)
|
|
|
|
litellm_logging_obj.update_environment_variables(
|
|
model=model,
|
|
user=user,
|
|
optional_params={},
|
|
litellm_params={
|
|
"litellm_call_id": litellm_call_id,
|
|
"proxy_server_request": proxy_server_request,
|
|
"model_info": model_info,
|
|
"metadata": metadata,
|
|
"preset_cache_key": None,
|
|
"stream_response": {},
|
|
},
|
|
custom_llm_provider=_custom_llm_provider,
|
|
)
|
|
|
|
if _custom_llm_provider == "azure":
|
|
api_base = (
|
|
dynamic_api_base
|
|
or litellm_params.api_base
|
|
or litellm.api_base
|
|
or get_secret_str("AZURE_API_BASE")
|
|
)
|
|
# set API KEY
|
|
api_key = (
|
|
dynamic_api_key
|
|
or litellm.api_key
|
|
or litellm.openai_key
|
|
or get_secret_str("AZURE_API_KEY")
|
|
)
|
|
|
|
await azure_realtime.async_realtime(
|
|
model=model,
|
|
websocket=websocket,
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
api_version="2024-10-01-preview",
|
|
azure_ad_token=None,
|
|
client=None,
|
|
timeout=timeout,
|
|
logging_obj=litellm_logging_obj,
|
|
)
|
|
elif _custom_llm_provider == "openai":
|
|
api_base = (
|
|
dynamic_api_base
|
|
or litellm_params.api_base
|
|
or litellm.api_base
|
|
or "https://api.openai.com/"
|
|
)
|
|
# set API KEY
|
|
api_key = (
|
|
dynamic_api_key
|
|
or litellm.api_key
|
|
or litellm.openai_key
|
|
or get_secret_str("OPENAI_API_KEY")
|
|
)
|
|
|
|
await openai_realtime.async_realtime(
|
|
model=model,
|
|
websocket=websocket,
|
|
logging_obj=litellm_logging_obj,
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
client=None,
|
|
timeout=timeout,
|
|
)
|
|
else:
|
|
raise ValueError(f"Unsupported model: {model}")
|
|
|
|
|
|
async def _realtime_health_check(
|
|
model: str,
|
|
custom_llm_provider: str,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str] = None,
|
|
api_version: Optional[str] = None,
|
|
):
|
|
"""
|
|
Health check for realtime API - tries connection to the realtime API websocket
|
|
|
|
Args:
|
|
model: str - model name
|
|
api_base: str - api base
|
|
api_version: Optional[str] - api version
|
|
api_key: str - api key
|
|
custom_llm_provider: str - custom llm provider
|
|
|
|
Returns:
|
|
bool - True if connection is successful, False otherwise
|
|
Raises:
|
|
Exception - if the connection is not successful
|
|
"""
|
|
import websockets
|
|
|
|
url: Optional[str] = None
|
|
if custom_llm_provider == "azure":
|
|
url = azure_realtime._construct_url(
|
|
api_base=api_base or "",
|
|
model=model,
|
|
api_version=api_version or "2024-10-01-preview",
|
|
)
|
|
elif custom_llm_provider == "openai":
|
|
url = openai_realtime._construct_url(
|
|
api_base=api_base or "https://api.openai.com/", model=model
|
|
)
|
|
else:
|
|
raise ValueError(f"Unsupported model: {model}")
|
|
async with websockets.connect( # type: ignore
|
|
url,
|
|
extra_headers={
|
|
"api-key": api_key, # type: ignore
|
|
},
|
|
):
|
|
return True
|