litellm-mirror/litellm/proxy/tests/load_test_completion.py
2024-03-18 16:47:02 -07:00

56 lines
1.7 KiB
Python

import time, asyncio, os
from openai import AsyncOpenAI, AsyncAzureOpenAI
import uuid
import traceback
from large_text import text
from dotenv import load_dotenv
litellm_client = AsyncOpenAI(base_url="http://0.0.0.0:4000", api_key="sk-1234")
async def litellm_completion():
# Your existing code for litellm_completion goes here
try:
response = await litellm_client.chat.completions.create(
model="fake_openai",
messages=[
{
"role": "user",
"content": f"{text}. Who was alexander the great? {uuid.uuid4()}",
}
],
user="my-new-end-user-1",
)
return response
except Exception as e:
# If there's an exception, log the error message
with open("error_log.txt", "a") as error_log:
error_log.write(f"Error during completion: {str(e)}\n")
pass
async def main():
for i in range(3):
start = time.time()
n = 10 # Number of concurrent tasks
tasks = [litellm_completion() for _ in range(n)]
chat_completions = await asyncio.gather(*tasks)
successful_completions = [c for c in chat_completions if c is not None]
# Write errors to error_log.txt
with open("error_log.txt", "a") as error_log:
for completion in chat_completions:
if isinstance(completion, str):
error_log.write(completion + "\n")
print(n, time.time() - start, len(successful_completions))
if __name__ == "__main__":
# Blank out contents of error_log.txt
open("error_log.txt", "w").close()
asyncio.run(main())