litellm-mirror/litellm/llms/base_llm/chat/transformation.py
Krish Dholakia b0f570ee16 Litellm dev 12 30 2024 p2 (#7495)
* test(azure_openai_o1.py): initial commit with testing for azure openai o1 preview model

* fix(base_llm_unit_tests.py): handle azure o1 preview response format tests

skip as o1 on azure doesn't support tool calling yet

* fix: initial commit of azure o1 handler using openai caller

simplifies calling + allows fake streaming logic alr. implemented for openai to just work

* feat(azure/o1_handler.py): fake o1 streaming for azure o1 models

azure does not currently support streaming for o1

* feat(o1_transformation.py): support overriding 'should_fake_stream' on azure/o1 via 'supports_native_streaming' param on model info

enables user to toggle on when azure allows o1 streaming without needing to bump versions

* style(router.py): remove 'give feedback/get help' messaging when router is used

Prevents noisy messaging

Closes https://github.com/BerriAI/litellm/issues/5942

* fix(types/utils.py): handle none logprobs

Fixes https://github.com/BerriAI/litellm/issues/328

* fix(exception_mapping_utils.py): fix error str unbound error

* refactor(azure_ai/): move to openai_like chat completion handler

allows for easy swapping of api base url's (e.g. ai.services.com)

Fixes https://github.com/BerriAI/litellm/issues/7275

* refactor(azure_ai/): move to base llm http handler

* fix(azure_ai/): handle differing api endpoints

* fix(azure_ai/): make sure all unit tests are passing

* fix: fix linting errors

* fix: fix linting errors

* fix: fix linting error

* fix: fix linting errors

* fix(azure_ai/transformation.py): handle extra body param

* fix(azure_ai/transformation.py): fix max retries param handling

* fix: fix test

* test(test_azure_o1.py): fix test

* fix(llm_http_handler.py): support handling azure ai unprocessable entity error

* fix(llm_http_handler.py): handle sync invalid param error for azure ai

* fix(azure_ai/): streaming support with base_llm_http_handler

* fix(llm_http_handler.py): working sync stream calls with unprocessable entity handling for azure ai

* fix: fix linting errors

* fix(llm_http_handler.py): fix linting error

* fix(azure_ai/): handle cohere tool call invalid index param error
2025-01-01 18:57:29 -08:00

194 lines
5 KiB
Python

"""
Common base config for all LLM providers
"""
import types
from abc import ABC, abstractmethod
from typing import TYPE_CHECKING, Any, AsyncIterator, Iterator, List, Optional, Union
import httpx
from litellm.types.llms.openai import AllMessageValues
from litellm.types.utils import ModelResponse
if TYPE_CHECKING:
from litellm.litellm_core_utils.litellm_logging import Logging as _LiteLLMLoggingObj
LiteLLMLoggingObj = _LiteLLMLoggingObj
else:
LiteLLMLoggingObj = Any
class BaseLLMException(Exception):
def __init__(
self,
status_code: int,
message: str,
headers: Optional[Union[dict, httpx.Headers]] = None,
request: Optional[httpx.Request] = None,
response: Optional[httpx.Response] = None,
):
self.status_code = status_code
self.message: str = message
self.headers = headers
if request:
self.request = request
else:
self.request = httpx.Request(
method="POST", url="https://docs.litellm.ai/docs"
)
if response:
self.response = response
else:
self.response = httpx.Response(
status_code=status_code, request=self.request
)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class BaseConfig(ABC):
def __init__(self):
pass
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not k.startswith("_abc")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def should_fake_stream(
self,
model: Optional[str],
stream: Optional[bool],
custom_llm_provider: Optional[str] = None,
) -> bool:
"""
Returns True if the model/provider should fake stream
"""
return False
def should_retry_llm_api_inside_llm_translation_on_http_error(
self, e: httpx.HTTPStatusError, litellm_params: dict
) -> bool:
"""
Returns True if the model/provider should retry the LLM API on UnprocessableEntityError
Overriden by azure ai - where different models support different parameters
"""
return False
def transform_request_on_unprocessable_entity_error(
self, e: httpx.HTTPStatusError, request_data: dict
) -> dict:
"""
Transform the request data on UnprocessableEntityError
"""
return request_data
@property
def max_retry_on_unprocessable_entity_error(self) -> int:
"""
Returns the max retry count for UnprocessableEntityError
Used if `should_retry_llm_api_inside_llm_translation_on_http_error` is True
"""
return 0
@abstractmethod
def get_supported_openai_params(self, model: str) -> list:
pass
@abstractmethod
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
pass
@abstractmethod
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
pass
def get_complete_url(
self,
api_base: str,
model: str,
optional_params: dict,
stream: Optional[bool] = None,
) -> str:
"""
OPTIONAL
Get the complete url for the request
Some providers need `model` in `api_base`
"""
return api_base
@abstractmethod
def transform_request(
self,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
headers: dict,
) -> dict:
pass
@abstractmethod
def transform_response(
self,
model: str,
raw_response: httpx.Response,
model_response: ModelResponse,
logging_obj: LiteLLMLoggingObj,
request_data: dict,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
encoding: Any,
api_key: Optional[str] = None,
json_mode: Optional[bool] = None,
) -> ModelResponse:
pass
@abstractmethod
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
) -> BaseLLMException:
pass
def get_model_response_iterator(
self,
streaming_response: Union[Iterator[str], AsyncIterator[str], ModelResponse],
sync_stream: bool,
json_mode: Optional[bool] = False,
) -> Any:
pass