mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
230 lines
6.7 KiB
Python
230 lines
6.7 KiB
Python
import json
|
|
import os
|
|
import sys
|
|
from datetime import datetime
|
|
from unittest.mock import AsyncMock, patch, MagicMock
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
|
|
|
|
import httpx
|
|
import pytest
|
|
from respx import MockRouter
|
|
|
|
import litellm
|
|
from litellm import Choices, Message, ModelResponse
|
|
from base_llm_unit_tests import BaseLLMChatTest, BaseOSeriesModelsTest
|
|
|
|
|
|
@pytest.mark.parametrize("model", ["o1-preview", "o1-mini", "o1"])
|
|
@pytest.mark.asyncio
|
|
async def test_o1_handle_system_role(model):
|
|
"""
|
|
Tests that:
|
|
- max_tokens is translated to 'max_completion_tokens'
|
|
- role 'system' is translated to 'user'
|
|
"""
|
|
from openai import AsyncOpenAI
|
|
from litellm.utils import supports_system_messages
|
|
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
litellm.set_verbose = True
|
|
|
|
client = AsyncOpenAI(api_key="fake-api-key")
|
|
|
|
with patch.object(
|
|
client.chat.completions.with_raw_response, "create"
|
|
) as mock_client:
|
|
try:
|
|
await litellm.acompletion(
|
|
model=model,
|
|
max_tokens=10,
|
|
messages=[{"role": "system", "content": "Be a good bot!"}],
|
|
client=client,
|
|
)
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
|
|
mock_client.assert_called_once()
|
|
request_body = mock_client.call_args.kwargs
|
|
|
|
print("request_body: ", request_body)
|
|
|
|
assert request_body["model"] == model
|
|
assert request_body["max_completion_tokens"] == 10
|
|
if supports_system_messages(model, "openai"):
|
|
assert request_body["messages"] == [
|
|
{"role": "system", "content": "Be a good bot!"}
|
|
]
|
|
else:
|
|
assert request_body["messages"] == [
|
|
{"role": "user", "content": "Be a good bot!"}
|
|
]
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"model, expected_tool_calling_support",
|
|
[("o1-preview", False), ("o1-mini", False), ("o1", True)],
|
|
)
|
|
@pytest.mark.asyncio
|
|
async def test_o1_handle_tool_calling_optional_params(
|
|
model, expected_tool_calling_support
|
|
):
|
|
"""
|
|
Tests that:
|
|
- max_tokens is translated to 'max_completion_tokens'
|
|
- role 'system' is translated to 'user'
|
|
"""
|
|
from openai import AsyncOpenAI
|
|
from litellm.utils import ProviderConfigManager
|
|
from litellm.types.utils import LlmProviders
|
|
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
|
|
config = ProviderConfigManager.get_provider_chat_config(
|
|
model=model, provider=LlmProviders.OPENAI
|
|
)
|
|
|
|
supported_params = config.get_supported_openai_params(model=model)
|
|
|
|
assert expected_tool_calling_support == ("tools" in supported_params)
|
|
|
|
|
|
@pytest.mark.asyncio
|
|
@pytest.mark.parametrize("model", ["gpt-4", "gpt-4-0314", "gpt-4-32k", "o1-preview"])
|
|
async def test_o1_max_completion_tokens(model: str):
|
|
"""
|
|
Tests that:
|
|
- max_completion_tokens is passed directly to OpenAI chat completion models
|
|
"""
|
|
from openai import AsyncOpenAI
|
|
|
|
litellm.set_verbose = True
|
|
|
|
client = AsyncOpenAI(api_key="fake-api-key")
|
|
|
|
with patch.object(
|
|
client.chat.completions.with_raw_response, "create"
|
|
) as mock_client:
|
|
try:
|
|
await litellm.acompletion(
|
|
model=model,
|
|
max_completion_tokens=10,
|
|
messages=[{"role": "user", "content": "Hello!"}],
|
|
client=client,
|
|
)
|
|
except Exception as e:
|
|
print(f"Error: {e}")
|
|
|
|
mock_client.assert_called_once()
|
|
request_body = mock_client.call_args.kwargs
|
|
|
|
print("request_body: ", request_body)
|
|
|
|
assert request_body["model"] == model
|
|
assert request_body["max_completion_tokens"] == 10
|
|
assert request_body["messages"] == [{"role": "user", "content": "Hello!"}]
|
|
|
|
|
|
def test_litellm_responses():
|
|
"""
|
|
ensures that type of completion_tokens_details is correctly handled / returned
|
|
"""
|
|
from litellm import ModelResponse
|
|
from litellm.types.utils import CompletionTokensDetails
|
|
|
|
response = ModelResponse(
|
|
usage={
|
|
"completion_tokens": 436,
|
|
"prompt_tokens": 14,
|
|
"total_tokens": 450,
|
|
"completion_tokens_details": {"reasoning_tokens": 0},
|
|
}
|
|
)
|
|
|
|
print("response: ", response)
|
|
|
|
assert isinstance(response.usage.completion_tokens_details, CompletionTokensDetails)
|
|
|
|
|
|
class TestOpenAIO1(BaseOSeriesModelsTest, BaseLLMChatTest):
|
|
def get_base_completion_call_args(self):
|
|
return {
|
|
"model": "o1",
|
|
}
|
|
|
|
def get_client(self):
|
|
from openai import OpenAI
|
|
|
|
return OpenAI(api_key="fake-api-key")
|
|
|
|
def test_tool_call_no_arguments(self, tool_call_no_arguments):
|
|
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
|
|
pass
|
|
|
|
def test_prompt_caching(self):
|
|
"""Temporary override. o1 prompt caching is not working."""
|
|
pass
|
|
|
|
|
|
class TestOpenAIO3(BaseOSeriesModelsTest, BaseLLMChatTest):
|
|
def get_base_completion_call_args(self):
|
|
return {
|
|
"model": "o3-mini",
|
|
}
|
|
|
|
def get_client(self):
|
|
from openai import OpenAI
|
|
|
|
return OpenAI(api_key="fake-api-key")
|
|
|
|
def test_tool_call_no_arguments(self, tool_call_no_arguments):
|
|
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
|
|
pass
|
|
|
|
|
|
def test_o1_supports_vision():
|
|
"""Test that o1 supports vision"""
|
|
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
|
|
litellm.model_cost = litellm.get_model_cost_map(url="")
|
|
for k, v in litellm.model_cost.items():
|
|
if k.startswith("o1") and v.get("litellm_provider") == "openai":
|
|
assert v.get("supports_vision") is True, f"{k} does not support vision"
|
|
|
|
|
|
def test_o3_reasoning_effort():
|
|
resp = litellm.completion(
|
|
model="o3-mini",
|
|
messages=[{"role": "user", "content": "Hello!"}],
|
|
reasoning_effort="high",
|
|
)
|
|
assert resp.choices[0].message.content is not None
|
|
|
|
|
|
@pytest.mark.parametrize("model", ["o1-preview", "o1-mini", "o1", "o3-mini"])
|
|
def test_streaming_response(model):
|
|
"""Test that streaming response is returned correctly"""
|
|
from litellm import completion
|
|
|
|
response = completion(
|
|
model=model,
|
|
messages=[
|
|
{"role": "system", "content": "Be a good bot!"},
|
|
{"role": "user", "content": "Hello!"},
|
|
],
|
|
stream=True,
|
|
)
|
|
|
|
assert response is not None
|
|
|
|
chunks = []
|
|
for chunk in response:
|
|
chunks.append(chunk)
|
|
|
|
resp = litellm.stream_chunk_builder(chunks=chunks)
|
|
print(resp)
|