litellm-mirror/litellm/tests/test_completion_cost.py

235 lines
7.4 KiB
Python

import sys, os
import traceback
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import time
import litellm
from litellm import get_max_tokens, model_cost, open_ai_chat_completion_models
import pytest
def test_get_gpt3_tokens():
max_tokens = get_max_tokens("gpt-3.5-turbo")
print(max_tokens)
assert max_tokens == 4097
# print(results)
# test_get_gpt3_tokens()
def test_get_palm_tokens():
# # 🦄🦄🦄🦄🦄🦄🦄🦄
max_tokens = get_max_tokens("palm/chat-bison")
assert max_tokens == 4096
print(max_tokens)
# test_get_palm_tokens()
def test_zephyr_hf_tokens():
max_tokens = get_max_tokens("huggingface/HuggingFaceH4/zephyr-7b-beta")
print(max_tokens)
assert max_tokens == 32768
# test_zephyr_hf_tokens()
def test_cost_ft_gpt_35():
try:
# this tests if litellm.completion_cost can calculate cost for ft:gpt-3.5-turbo:my-org:custom_suffix:id
# it needs to lookup ft:gpt-3.5-turbo in the litellm model_cost map to get the correct cost
from litellm import ModelResponse, Choices, Message
from litellm.utils import Usage
resp = ModelResponse(
id="chatcmpl-e41836bb-bb8b-4df2-8e70-8f3e160155ac",
choices=[
Choices(
finish_reason=None,
index=0,
message=Message(
content=" Sure! Here is a short poem about the sky:\n\nA canvas of blue, a",
role="assistant",
),
)
],
created=1700775391,
model="ft:gpt-3.5-turbo:my-org:custom_suffix:id",
object="chat.completion",
system_fingerprint=None,
usage=Usage(prompt_tokens=21, completion_tokens=17, total_tokens=38),
)
cost = litellm.completion_cost(completion_response=resp)
print("\n Calculated Cost for ft:gpt-3.5", cost)
input_cost = model_cost["ft:gpt-3.5-turbo"]["input_cost_per_token"]
output_cost = model_cost["ft:gpt-3.5-turbo"]["output_cost_per_token"]
print(input_cost, output_cost)
expected_cost = (input_cost * resp.usage.prompt_tokens) + (
output_cost * resp.usage.completion_tokens
)
print("\n Excpected cost", expected_cost)
assert cost == expected_cost
except Exception as e:
pytest.fail(
f"Cost Calc failed for ft:gpt-3.5. Expected {expected_cost}, Calculated cost {cost}"
)
# test_cost_ft_gpt_35()
def test_cost_azure_gpt_35():
try:
# this tests if litellm.completion_cost can calculate cost for azure/chatgpt-deployment-2 which maps to azure/gpt-3.5-turbo
# for this test we check if passing `model` to completion_cost overrides the completion cost
from litellm import ModelResponse, Choices, Message
from litellm.utils import Usage
resp = ModelResponse(
id="chatcmpl-e41836bb-bb8b-4df2-8e70-8f3e160155ac",
choices=[
Choices(
finish_reason=None,
index=0,
message=Message(
content=" Sure! Here is a short poem about the sky:\n\nA canvas of blue, a",
role="assistant",
),
)
],
model="gpt-35-turbo", # azure always has model written like this
usage=Usage(prompt_tokens=21, completion_tokens=17, total_tokens=38),
)
cost = litellm.completion_cost(
completion_response=resp, model="azure/gpt-35-turbo"
)
print("\n Calculated Cost for azure/gpt-3.5-turbo", cost)
input_cost = model_cost["azure/gpt-35-turbo"]["input_cost_per_token"]
output_cost = model_cost["azure/gpt-35-turbo"]["output_cost_per_token"]
expected_cost = (input_cost * resp.usage.prompt_tokens) + (
output_cost * resp.usage.completion_tokens
)
print("\n Excpected cost", expected_cost)
assert cost == expected_cost
except Exception as e:
pytest.fail(
f"Cost Calc failed for azure/gpt-3.5-turbo. Expected {expected_cost}, Calculated cost {cost}"
)
# test_cost_azure_gpt_35()
def test_cost_azure_embedding():
try:
import asyncio
litellm.set_verbose = True
async def _test():
response = await litellm.aembedding(
model="azure/azure-embedding-model",
input=["good morning from litellm", "gm"],
)
print(response)
return response
response = asyncio.run(_test())
cost = litellm.completion_cost(completion_response=response)
print("Cost", cost)
expected_cost = float("7e-07")
assert cost == expected_cost
except Exception as e:
pytest.fail(
f"Cost Calc failed for azure/gpt-3.5-turbo. Expected {expected_cost}, Calculated cost {cost}"
)
# test_cost_azure_embedding()
def test_cost_openai_image_gen():
cost = litellm.completion_cost(
model="dall-e-2", size="1024-x-1024", quality="standard", n=1
)
assert cost == 0.019922944
def test_cost_bedrock_pricing():
"""
- get pricing specific to region for a model
"""
from litellm import ModelResponse, Choices, Message
from litellm.utils import Usage
litellm.set_verbose = True
input_tokens = litellm.token_counter(
model="bedrock/anthropic.claude-instant-v1",
messages=[{"role": "user", "content": "Hey, how's it going?"}],
)
print(f"input_tokens: {input_tokens}")
output_tokens = litellm.token_counter(
model="bedrock/anthropic.claude-instant-v1",
text="It's all going well",
count_response_tokens=True,
)
print(f"output_tokens: {output_tokens}")
resp = ModelResponse(
id="chatcmpl-e41836bb-bb8b-4df2-8e70-8f3e160155ac",
choices=[
Choices(
finish_reason=None,
index=0,
message=Message(
content="It's all going well",
role="assistant",
),
)
],
created=1700775391,
model="anthropic.claude-instant-v1",
object="chat.completion",
system_fingerprint=None,
usage=Usage(
prompt_tokens=input_tokens,
completion_tokens=output_tokens,
total_tokens=input_tokens + output_tokens,
),
)
resp._hidden_params = {
"custom_llm_provider": "bedrock",
"region_name": "ap-northeast-1",
}
cost = litellm.completion_cost(
model="anthropic.claude-instant-v1",
completion_response=resp,
messages=[{"role": "user", "content": "Hey, how's it going?"}],
)
predicted_cost = input_tokens * 0.00000223 + 0.00000755 * output_tokens
assert cost == predicted_cost
def test_cost_bedrock_pricing_actual_calls():
litellm.set_verbose = True
model = "anthropic.claude-instant-v1"
messages = [{"role": "user", "content": "Hey, how's it going?"}]
response = litellm.completion(model=model, messages=messages)
assert response._hidden_params["region_name"] is not None
cost = litellm.completion_cost(
completion_response=response,
messages=[{"role": "user", "content": "Hey, how's it going?"}],
)
assert cost > 0