mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* test(tests): add unit testing for litellm_proxy integration * fix(cost_calculator.py): fix tracking cost in sdk when calling proxy * fix(main.py): respect litellm.api_base on `vertex_ai/` and `gemini/` routes * fix(main.py): consistently support custom api base across gemini + vertexai on embedding + completion * feat(vertex_ai/): test * fix: fix linting error * test: set api base as None before starting loadtest
228 lines
8.4 KiB
Python
228 lines
8.4 KiB
Python
from typing import Literal, Optional, Union
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObject
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
HTTPHandler,
|
|
_get_httpx_client,
|
|
get_async_httpx_client,
|
|
)
|
|
from litellm.llms.vertex_ai.vertex_ai_non_gemini import VertexAIError
|
|
from litellm.llms.vertex_ai.vertex_llm_base import VertexBase
|
|
from litellm.types.llms.vertex_ai import *
|
|
from litellm.types.utils import EmbeddingResponse
|
|
|
|
from .types import *
|
|
|
|
|
|
class VertexEmbedding(VertexBase):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def embedding(
|
|
self,
|
|
model: str,
|
|
input: Union[list, str],
|
|
print_verbose,
|
|
model_response: EmbeddingResponse,
|
|
optional_params: dict,
|
|
logging_obj: LiteLLMLoggingObject,
|
|
custom_llm_provider: Literal[
|
|
"vertex_ai", "vertex_ai_beta", "gemini"
|
|
], # if it's vertex_ai or gemini (google ai studio)
|
|
timeout: Optional[Union[float, httpx.Timeout]],
|
|
api_key: Optional[str] = None,
|
|
encoding=None,
|
|
aembedding=False,
|
|
api_base: Optional[str] = None,
|
|
client: Optional[Union[AsyncHTTPHandler, HTTPHandler]] = None,
|
|
vertex_project: Optional[str] = None,
|
|
vertex_location: Optional[str] = None,
|
|
vertex_credentials: Optional[VERTEX_CREDENTIALS_TYPES] = None,
|
|
gemini_api_key: Optional[str] = None,
|
|
extra_headers: Optional[dict] = None,
|
|
) -> EmbeddingResponse:
|
|
if aembedding is True:
|
|
return self.async_embedding( # type: ignore
|
|
model=model,
|
|
input=input,
|
|
logging_obj=logging_obj,
|
|
model_response=model_response,
|
|
optional_params=optional_params,
|
|
encoding=encoding,
|
|
custom_llm_provider=custom_llm_provider,
|
|
timeout=timeout,
|
|
api_base=api_base,
|
|
vertex_project=vertex_project,
|
|
vertex_location=vertex_location,
|
|
vertex_credentials=vertex_credentials,
|
|
gemini_api_key=gemini_api_key,
|
|
extra_headers=extra_headers,
|
|
)
|
|
|
|
should_use_v1beta1_features = self.is_using_v1beta1_features(
|
|
optional_params=optional_params
|
|
)
|
|
|
|
_auth_header, vertex_project = self._ensure_access_token(
|
|
credentials=vertex_credentials,
|
|
project_id=vertex_project,
|
|
custom_llm_provider=custom_llm_provider,
|
|
)
|
|
auth_header, api_base = self._get_token_and_url(
|
|
model=model,
|
|
gemini_api_key=gemini_api_key,
|
|
auth_header=_auth_header,
|
|
vertex_project=vertex_project,
|
|
vertex_location=vertex_location,
|
|
vertex_credentials=vertex_credentials,
|
|
stream=False,
|
|
custom_llm_provider=custom_llm_provider,
|
|
api_base=api_base,
|
|
should_use_v1beta1_features=should_use_v1beta1_features,
|
|
mode="embedding",
|
|
)
|
|
headers = self.set_headers(auth_header=auth_header, extra_headers=extra_headers)
|
|
vertex_request: VertexEmbeddingRequest = (
|
|
litellm.vertexAITextEmbeddingConfig.transform_openai_request_to_vertex_embedding_request(
|
|
input=input, optional_params=optional_params, model=model
|
|
)
|
|
)
|
|
|
|
_client_params = {}
|
|
if timeout:
|
|
_client_params["timeout"] = timeout
|
|
if client is None or not isinstance(client, HTTPHandler):
|
|
client = _get_httpx_client(params=_client_params)
|
|
else:
|
|
client = client # type: ignore
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=vertex_request,
|
|
api_key="",
|
|
additional_args={
|
|
"complete_input_dict": vertex_request,
|
|
"api_base": api_base,
|
|
"headers": headers,
|
|
},
|
|
)
|
|
|
|
try:
|
|
response = client.post(url=api_base, headers=headers, json=vertex_request) # type: ignore
|
|
response.raise_for_status()
|
|
except httpx.HTTPStatusError as err:
|
|
error_code = err.response.status_code
|
|
raise VertexAIError(status_code=error_code, message=err.response.text)
|
|
except httpx.TimeoutException:
|
|
raise VertexAIError(status_code=408, message="Timeout error occurred.")
|
|
|
|
_json_response = response.json()
|
|
## LOGGING POST-CALL
|
|
logging_obj.post_call(
|
|
input=input, api_key=None, original_response=_json_response
|
|
)
|
|
|
|
model_response = (
|
|
litellm.vertexAITextEmbeddingConfig.transform_vertex_response_to_openai(
|
|
response=_json_response, model=model, model_response=model_response
|
|
)
|
|
)
|
|
|
|
return model_response
|
|
|
|
async def async_embedding(
|
|
self,
|
|
model: str,
|
|
input: Union[list, str],
|
|
model_response: litellm.EmbeddingResponse,
|
|
logging_obj: LiteLLMLoggingObject,
|
|
optional_params: dict,
|
|
custom_llm_provider: Literal[
|
|
"vertex_ai", "vertex_ai_beta", "gemini"
|
|
], # if it's vertex_ai or gemini (google ai studio)
|
|
timeout: Optional[Union[float, httpx.Timeout]],
|
|
api_base: Optional[str] = None,
|
|
client: Optional[AsyncHTTPHandler] = None,
|
|
vertex_project: Optional[str] = None,
|
|
vertex_location: Optional[str] = None,
|
|
vertex_credentials: Optional[VERTEX_CREDENTIALS_TYPES] = None,
|
|
gemini_api_key: Optional[str] = None,
|
|
extra_headers: Optional[dict] = None,
|
|
encoding=None,
|
|
) -> litellm.EmbeddingResponse:
|
|
"""
|
|
Async embedding implementation
|
|
"""
|
|
should_use_v1beta1_features = self.is_using_v1beta1_features(
|
|
optional_params=optional_params
|
|
)
|
|
_auth_header, vertex_project = await self._ensure_access_token_async(
|
|
credentials=vertex_credentials,
|
|
project_id=vertex_project,
|
|
custom_llm_provider=custom_llm_provider,
|
|
)
|
|
auth_header, api_base = self._get_token_and_url(
|
|
model=model,
|
|
gemini_api_key=gemini_api_key,
|
|
auth_header=_auth_header,
|
|
vertex_project=vertex_project,
|
|
vertex_location=vertex_location,
|
|
vertex_credentials=vertex_credentials,
|
|
stream=False,
|
|
custom_llm_provider=custom_llm_provider,
|
|
api_base=api_base,
|
|
should_use_v1beta1_features=should_use_v1beta1_features,
|
|
mode="embedding",
|
|
)
|
|
headers = self.set_headers(auth_header=auth_header, extra_headers=extra_headers)
|
|
vertex_request: VertexEmbeddingRequest = (
|
|
litellm.vertexAITextEmbeddingConfig.transform_openai_request_to_vertex_embedding_request(
|
|
input=input, optional_params=optional_params, model=model
|
|
)
|
|
)
|
|
|
|
_async_client_params = {}
|
|
if timeout:
|
|
_async_client_params["timeout"] = timeout
|
|
if client is None or not isinstance(client, AsyncHTTPHandler):
|
|
client = get_async_httpx_client(
|
|
params=_async_client_params, llm_provider=litellm.LlmProviders.VERTEX_AI
|
|
)
|
|
else:
|
|
client = client # type: ignore
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=vertex_request,
|
|
api_key="",
|
|
additional_args={
|
|
"complete_input_dict": vertex_request,
|
|
"api_base": api_base,
|
|
"headers": headers,
|
|
},
|
|
)
|
|
|
|
try:
|
|
response = await client.post(api_base, headers=headers, json=vertex_request) # type: ignore
|
|
response.raise_for_status()
|
|
except httpx.HTTPStatusError as err:
|
|
error_code = err.response.status_code
|
|
raise VertexAIError(status_code=error_code, message=err.response.text)
|
|
except httpx.TimeoutException:
|
|
raise VertexAIError(status_code=408, message="Timeout error occurred.")
|
|
|
|
_json_response = response.json()
|
|
## LOGGING POST-CALL
|
|
logging_obj.post_call(
|
|
input=input, api_key=None, original_response=_json_response
|
|
)
|
|
|
|
model_response = (
|
|
litellm.vertexAITextEmbeddingConfig.transform_vertex_response_to_openai(
|
|
response=_json_response, model=model, model_response=model_response
|
|
)
|
|
)
|
|
|
|
return model_response
|