mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
* fix(generic_api_callback.py): remove requests lib usage * fix(budget_manager.py): remove requests lib usgae * fix(main.py): cleanup requests lib usage * fix(utils.py): remove requests lib usage * fix(argilla.py): fix argilla test * fix(athina.py): replace 'requests' lib usage with litellm module * fix(greenscale.py): replace 'requests' lib usage with httpx * fix: remove unused 'requests' lib import + replace usage in some places * fix(prompt_layer.py): remove 'requests' lib usage from prompt layer * fix(ollama_chat.py): remove 'requests' lib usage * fix(baseten.py): replace 'requests' lib usage * fix(codestral/): replace 'requests' lib usage * fix(predibase/): replace 'requests' lib usage * refactor: cleanup unused 'requests' lib imports * fix(oobabooga.py): cleanup 'requests' lib usage * fix(invoke_handler.py): remove unused 'requests' lib usage * refactor: cleanup unused 'requests' lib import * fix: fix linting errors * refactor(ollama/): move ollama to using base llm http handler removes 'requests' lib dep for ollama integration * fix(ollama_chat.py): fix linting errors * fix(ollama/completion/transformation.py): convert non-jpeg/png image to jpeg/png before passing to ollama
455 lines
17 KiB
Python
455 lines
17 KiB
Python
import json
|
|
import types # type: ignore
|
|
import uuid
|
|
from typing import Any, Callable, Optional, Union
|
|
|
|
import httpx
|
|
from openai import AsyncAzureOpenAI, AzureOpenAI
|
|
|
|
import litellm
|
|
from litellm import OpenAIConfig
|
|
from litellm.litellm_core_utils.prompt_templates.factory import (
|
|
custom_prompt,
|
|
prompt_factory,
|
|
)
|
|
from litellm.utils import (
|
|
Choices,
|
|
CustomStreamWrapper,
|
|
Message,
|
|
ModelResponse,
|
|
TextCompletionResponse,
|
|
TranscriptionResponse,
|
|
convert_to_model_response_object,
|
|
)
|
|
|
|
from ...base import BaseLLM
|
|
from ...openai.completion.handler import OpenAITextCompletion
|
|
from ...openai.completion.transformation import OpenAITextCompletionConfig
|
|
from ..common_utils import AzureOpenAIError
|
|
|
|
openai_text_completion_config = OpenAITextCompletionConfig()
|
|
|
|
|
|
def select_azure_base_url_or_endpoint(azure_client_params: dict):
|
|
azure_endpoint = azure_client_params.get("azure_endpoint", None)
|
|
if azure_endpoint is not None:
|
|
# see : https://github.com/openai/openai-python/blob/3d61ed42aba652b547029095a7eb269ad4e1e957/src/openai/lib/azure.py#L192
|
|
if "/openai/deployments" in azure_endpoint:
|
|
# this is base_url, not an azure_endpoint
|
|
azure_client_params["base_url"] = azure_endpoint
|
|
azure_client_params.pop("azure_endpoint")
|
|
|
|
return azure_client_params
|
|
|
|
|
|
class AzureTextCompletion(BaseLLM):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def validate_environment(self, api_key, azure_ad_token):
|
|
headers = {
|
|
"content-type": "application/json",
|
|
}
|
|
if api_key is not None:
|
|
headers["api-key"] = api_key
|
|
elif azure_ad_token is not None:
|
|
headers["Authorization"] = f"Bearer {azure_ad_token}"
|
|
return headers
|
|
|
|
def completion( # noqa: PLR0915
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
model_response: ModelResponse,
|
|
api_key: str,
|
|
api_base: str,
|
|
api_version: str,
|
|
api_type: str,
|
|
azure_ad_token: str,
|
|
print_verbose: Callable,
|
|
timeout,
|
|
logging_obj,
|
|
optional_params,
|
|
litellm_params,
|
|
logger_fn,
|
|
acompletion: bool = False,
|
|
headers: Optional[dict] = None,
|
|
client=None,
|
|
):
|
|
super().completion()
|
|
try:
|
|
if model is None or messages is None:
|
|
raise AzureOpenAIError(
|
|
status_code=422, message="Missing model or messages"
|
|
)
|
|
|
|
max_retries = optional_params.pop("max_retries", 2)
|
|
prompt = prompt_factory(
|
|
messages=messages, model=model, custom_llm_provider="azure_text"
|
|
)
|
|
|
|
### CHECK IF CLOUDFLARE AI GATEWAY ###
|
|
### if so - set the model as part of the base url
|
|
if "gateway.ai.cloudflare.com" in api_base:
|
|
## build base url - assume api base includes resource name
|
|
if client is None:
|
|
if not api_base.endswith("/"):
|
|
api_base += "/"
|
|
api_base += f"{model}"
|
|
|
|
azure_client_params = {
|
|
"api_version": api_version,
|
|
"base_url": f"{api_base}",
|
|
"http_client": litellm.client_session,
|
|
"max_retries": max_retries,
|
|
"timeout": timeout,
|
|
}
|
|
if api_key is not None:
|
|
azure_client_params["api_key"] = api_key
|
|
elif azure_ad_token is not None:
|
|
azure_client_params["azure_ad_token"] = azure_ad_token
|
|
|
|
if acompletion is True:
|
|
client = AsyncAzureOpenAI(**azure_client_params)
|
|
else:
|
|
client = AzureOpenAI(**azure_client_params)
|
|
|
|
data = {"model": None, "prompt": prompt, **optional_params}
|
|
else:
|
|
data = {
|
|
"model": model, # type: ignore
|
|
"prompt": prompt,
|
|
**optional_params,
|
|
}
|
|
|
|
if acompletion is True:
|
|
if optional_params.get("stream", False):
|
|
return self.async_streaming(
|
|
logging_obj=logging_obj,
|
|
api_base=api_base,
|
|
data=data,
|
|
model=model,
|
|
api_key=api_key,
|
|
api_version=api_version,
|
|
azure_ad_token=azure_ad_token,
|
|
timeout=timeout,
|
|
client=client,
|
|
)
|
|
else:
|
|
return self.acompletion(
|
|
api_base=api_base,
|
|
data=data,
|
|
model_response=model_response,
|
|
api_key=api_key,
|
|
api_version=api_version,
|
|
model=model,
|
|
azure_ad_token=azure_ad_token,
|
|
timeout=timeout,
|
|
client=client,
|
|
logging_obj=logging_obj,
|
|
)
|
|
elif "stream" in optional_params and optional_params["stream"] is True:
|
|
return self.streaming(
|
|
logging_obj=logging_obj,
|
|
api_base=api_base,
|
|
data=data,
|
|
model=model,
|
|
api_key=api_key,
|
|
api_version=api_version,
|
|
azure_ad_token=azure_ad_token,
|
|
timeout=timeout,
|
|
client=client,
|
|
)
|
|
else:
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"headers": {
|
|
"api_key": api_key,
|
|
"azure_ad_token": azure_ad_token,
|
|
},
|
|
"api_version": api_version,
|
|
"api_base": api_base,
|
|
"complete_input_dict": data,
|
|
},
|
|
)
|
|
if not isinstance(max_retries, int):
|
|
raise AzureOpenAIError(
|
|
status_code=422, message="max retries must be an int"
|
|
)
|
|
# init AzureOpenAI Client
|
|
azure_client_params = {
|
|
"api_version": api_version,
|
|
"azure_endpoint": api_base,
|
|
"azure_deployment": model,
|
|
"http_client": litellm.client_session,
|
|
"max_retries": max_retries,
|
|
"timeout": timeout,
|
|
}
|
|
azure_client_params = select_azure_base_url_or_endpoint(
|
|
azure_client_params=azure_client_params
|
|
)
|
|
if api_key is not None:
|
|
azure_client_params["api_key"] = api_key
|
|
elif azure_ad_token is not None:
|
|
azure_client_params["azure_ad_token"] = azure_ad_token
|
|
if client is None:
|
|
azure_client = AzureOpenAI(**azure_client_params)
|
|
else:
|
|
azure_client = client
|
|
if api_version is not None and isinstance(
|
|
azure_client._custom_query, dict
|
|
):
|
|
# set api_version to version passed by user
|
|
azure_client._custom_query.setdefault(
|
|
"api-version", api_version
|
|
)
|
|
|
|
raw_response = azure_client.completions.with_raw_response.create(
|
|
**data, timeout=timeout
|
|
)
|
|
response = raw_response.parse()
|
|
stringified_response = response.model_dump()
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key=api_key,
|
|
original_response=stringified_response,
|
|
additional_args={
|
|
"headers": headers,
|
|
"api_version": api_version,
|
|
"api_base": api_base,
|
|
},
|
|
)
|
|
return (
|
|
openai_text_completion_config.convert_to_chat_model_response_object(
|
|
response_object=TextCompletionResponse(**stringified_response),
|
|
model_response_object=model_response,
|
|
)
|
|
)
|
|
except AzureOpenAIError as e:
|
|
raise e
|
|
except Exception as e:
|
|
status_code = getattr(e, "status_code", 500)
|
|
error_headers = getattr(e, "headers", None)
|
|
error_response = getattr(e, "response", None)
|
|
if error_headers is None and error_response:
|
|
error_headers = getattr(error_response, "headers", None)
|
|
raise AzureOpenAIError(
|
|
status_code=status_code, message=str(e), headers=error_headers
|
|
)
|
|
|
|
async def acompletion(
|
|
self,
|
|
api_key: str,
|
|
api_version: str,
|
|
model: str,
|
|
api_base: str,
|
|
data: dict,
|
|
timeout: Any,
|
|
model_response: ModelResponse,
|
|
logging_obj: Any,
|
|
azure_ad_token: Optional[str] = None,
|
|
client=None, # this is the AsyncAzureOpenAI
|
|
):
|
|
response = None
|
|
try:
|
|
max_retries = data.pop("max_retries", 2)
|
|
if not isinstance(max_retries, int):
|
|
raise AzureOpenAIError(
|
|
status_code=422, message="max retries must be an int"
|
|
)
|
|
|
|
# init AzureOpenAI Client
|
|
azure_client_params = {
|
|
"api_version": api_version,
|
|
"azure_endpoint": api_base,
|
|
"azure_deployment": model,
|
|
"http_client": litellm.client_session,
|
|
"max_retries": max_retries,
|
|
"timeout": timeout,
|
|
}
|
|
azure_client_params = select_azure_base_url_or_endpoint(
|
|
azure_client_params=azure_client_params
|
|
)
|
|
if api_key is not None:
|
|
azure_client_params["api_key"] = api_key
|
|
elif azure_ad_token is not None:
|
|
azure_client_params["azure_ad_token"] = azure_ad_token
|
|
|
|
# setting Azure client
|
|
if client is None:
|
|
azure_client = AsyncAzureOpenAI(**azure_client_params)
|
|
else:
|
|
azure_client = client
|
|
if api_version is not None and isinstance(
|
|
azure_client._custom_query, dict
|
|
):
|
|
# set api_version to version passed by user
|
|
azure_client._custom_query.setdefault("api-version", api_version)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=data["prompt"],
|
|
api_key=azure_client.api_key,
|
|
additional_args={
|
|
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
|
|
"api_base": azure_client._base_url._uri_reference,
|
|
"acompletion": True,
|
|
"complete_input_dict": data,
|
|
},
|
|
)
|
|
raw_response = await azure_client.completions.with_raw_response.create(
|
|
**data, timeout=timeout
|
|
)
|
|
response = raw_response.parse()
|
|
return openai_text_completion_config.convert_to_chat_model_response_object(
|
|
response_object=response.model_dump(),
|
|
model_response_object=model_response,
|
|
)
|
|
except AzureOpenAIError as e:
|
|
raise e
|
|
except Exception as e:
|
|
status_code = getattr(e, "status_code", 500)
|
|
error_headers = getattr(e, "headers", None)
|
|
error_response = getattr(e, "response", None)
|
|
if error_headers is None and error_response:
|
|
error_headers = getattr(error_response, "headers", None)
|
|
raise AzureOpenAIError(
|
|
status_code=status_code, message=str(e), headers=error_headers
|
|
)
|
|
|
|
def streaming(
|
|
self,
|
|
logging_obj,
|
|
api_base: str,
|
|
api_key: str,
|
|
api_version: str,
|
|
data: dict,
|
|
model: str,
|
|
timeout: Any,
|
|
azure_ad_token: Optional[str] = None,
|
|
client=None,
|
|
):
|
|
max_retries = data.pop("max_retries", 2)
|
|
if not isinstance(max_retries, int):
|
|
raise AzureOpenAIError(
|
|
status_code=422, message="max retries must be an int"
|
|
)
|
|
# init AzureOpenAI Client
|
|
azure_client_params = {
|
|
"api_version": api_version,
|
|
"azure_endpoint": api_base,
|
|
"azure_deployment": model,
|
|
"http_client": litellm.client_session,
|
|
"max_retries": max_retries,
|
|
"timeout": timeout,
|
|
}
|
|
azure_client_params = select_azure_base_url_or_endpoint(
|
|
azure_client_params=azure_client_params
|
|
)
|
|
if api_key is not None:
|
|
azure_client_params["api_key"] = api_key
|
|
elif azure_ad_token is not None:
|
|
azure_client_params["azure_ad_token"] = azure_ad_token
|
|
if client is None:
|
|
azure_client = AzureOpenAI(**azure_client_params)
|
|
else:
|
|
azure_client = client
|
|
if api_version is not None and isinstance(azure_client._custom_query, dict):
|
|
# set api_version to version passed by user
|
|
azure_client._custom_query.setdefault("api-version", api_version)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=data["prompt"],
|
|
api_key=azure_client.api_key,
|
|
additional_args={
|
|
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
|
|
"api_base": azure_client._base_url._uri_reference,
|
|
"acompletion": True,
|
|
"complete_input_dict": data,
|
|
},
|
|
)
|
|
raw_response = azure_client.completions.with_raw_response.create(
|
|
**data, timeout=timeout
|
|
)
|
|
response = raw_response.parse()
|
|
streamwrapper = CustomStreamWrapper(
|
|
completion_stream=response,
|
|
model=model,
|
|
custom_llm_provider="azure_text",
|
|
logging_obj=logging_obj,
|
|
)
|
|
return streamwrapper
|
|
|
|
async def async_streaming(
|
|
self,
|
|
logging_obj,
|
|
api_base: str,
|
|
api_key: str,
|
|
api_version: str,
|
|
data: dict,
|
|
model: str,
|
|
timeout: Any,
|
|
azure_ad_token: Optional[str] = None,
|
|
client=None,
|
|
):
|
|
try:
|
|
# init AzureOpenAI Client
|
|
azure_client_params = {
|
|
"api_version": api_version,
|
|
"azure_endpoint": api_base,
|
|
"azure_deployment": model,
|
|
"http_client": litellm.client_session,
|
|
"max_retries": data.pop("max_retries", 2),
|
|
"timeout": timeout,
|
|
}
|
|
azure_client_params = select_azure_base_url_or_endpoint(
|
|
azure_client_params=azure_client_params
|
|
)
|
|
if api_key is not None:
|
|
azure_client_params["api_key"] = api_key
|
|
elif azure_ad_token is not None:
|
|
azure_client_params["azure_ad_token"] = azure_ad_token
|
|
if client is None:
|
|
azure_client = AsyncAzureOpenAI(**azure_client_params)
|
|
else:
|
|
azure_client = client
|
|
if api_version is not None and isinstance(
|
|
azure_client._custom_query, dict
|
|
):
|
|
# set api_version to version passed by user
|
|
azure_client._custom_query.setdefault("api-version", api_version)
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=data["prompt"],
|
|
api_key=azure_client.api_key,
|
|
additional_args={
|
|
"headers": {"Authorization": f"Bearer {azure_client.api_key}"},
|
|
"api_base": azure_client._base_url._uri_reference,
|
|
"acompletion": True,
|
|
"complete_input_dict": data,
|
|
},
|
|
)
|
|
raw_response = await azure_client.completions.with_raw_response.create(
|
|
**data, timeout=timeout
|
|
)
|
|
response = raw_response.parse()
|
|
# return response
|
|
streamwrapper = CustomStreamWrapper(
|
|
completion_stream=response,
|
|
model=model,
|
|
custom_llm_provider="azure_text",
|
|
logging_obj=logging_obj,
|
|
)
|
|
return streamwrapper ## DO NOT make this into an async for ... loop, it will yield an async generator, which won't raise errors if the response fails
|
|
except Exception as e:
|
|
status_code = getattr(e, "status_code", 500)
|
|
error_headers = getattr(e, "headers", None)
|
|
error_response = getattr(e, "response", None)
|
|
if error_headers is None and error_response:
|
|
error_headers = getattr(error_response, "headers", None)
|
|
raise AzureOpenAIError(
|
|
status_code=status_code, message=str(e), headers=error_headers
|
|
)
|