litellm-mirror/litellm/llms/cohere/embed/handler.py
Krish Dholakia b82add11ba
LITELLM: Remove requests library usage (#7235)
* fix(generic_api_callback.py): remove requests lib usage

* fix(budget_manager.py): remove requests lib usgae

* fix(main.py): cleanup requests lib usage

* fix(utils.py): remove requests lib usage

* fix(argilla.py): fix argilla test

* fix(athina.py): replace 'requests' lib usage with litellm module

* fix(greenscale.py): replace 'requests' lib usage with httpx

* fix: remove unused 'requests' lib import + replace usage in some places

* fix(prompt_layer.py): remove 'requests' lib usage from prompt layer

* fix(ollama_chat.py): remove 'requests' lib usage

* fix(baseten.py): replace 'requests' lib usage

* fix(codestral/): replace 'requests' lib usage

* fix(predibase/): replace 'requests' lib usage

* refactor: cleanup unused 'requests' lib imports

* fix(oobabooga.py): cleanup 'requests' lib usage

* fix(invoke_handler.py): remove unused 'requests' lib usage

* refactor: cleanup unused 'requests' lib import

* fix: fix linting errors

* refactor(ollama/): move ollama to using base llm http handler

removes 'requests' lib dep for ollama integration

* fix(ollama_chat.py): fix linting errors

* fix(ollama/completion/transformation.py): convert non-jpeg/png image to jpeg/png before passing to ollama
2024-12-17 12:50:04 -08:00

184 lines
5.1 KiB
Python

import json
import os
import time
import traceback
import types
from enum import Enum
from typing import Any, Callable, Optional, Union
import httpx
import litellm
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
HTTPHandler,
get_async_httpx_client,
)
from litellm.types.llms.bedrock import CohereEmbeddingRequest
from litellm.types.utils import EmbeddingResponse
from litellm.utils import Choices, Message, ModelResponse, Usage
from .transformation import CohereEmbeddingConfig
def validate_environment(api_key, headers: dict):
headers.update(
{
"Request-Source": "unspecified:litellm",
"accept": "application/json",
"content-type": "application/json",
}
)
if api_key:
headers["Authorization"] = f"Bearer {api_key}"
return headers
class CohereError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
self.request = httpx.Request(
method="POST", url="https://api.cohere.ai/v1/generate"
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
async def async_embedding(
model: str,
data: Union[dict, CohereEmbeddingRequest],
input: list,
model_response: litellm.utils.EmbeddingResponse,
timeout: Optional[Union[float, httpx.Timeout]],
logging_obj: LiteLLMLoggingObj,
optional_params: dict,
api_base: str,
api_key: Optional[str],
headers: dict,
encoding: Callable,
client: Optional[AsyncHTTPHandler] = None,
):
## LOGGING
logging_obj.pre_call(
input=input,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"headers": headers,
"api_base": api_base,
},
)
## COMPLETION CALL
if client is None:
client = get_async_httpx_client(
llm_provider=litellm.LlmProviders.COHERE,
params={"timeout": timeout},
)
try:
response = await client.post(api_base, headers=headers, data=json.dumps(data))
except httpx.HTTPStatusError as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=e.response.text,
)
raise e
except Exception as e:
## LOGGING
logging_obj.post_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
original_response=str(e),
)
raise e
## PROCESS RESPONSE ##
return CohereEmbeddingConfig()._transform_response(
response=response,
api_key=api_key,
logging_obj=logging_obj,
data=data,
model_response=model_response,
model=model,
encoding=encoding,
input=input,
)
def embedding(
model: str,
input: list,
model_response: EmbeddingResponse,
logging_obj: LiteLLMLoggingObj,
optional_params: dict,
headers: dict,
encoding: Any,
data: Optional[Union[dict, CohereEmbeddingRequest]] = None,
complete_api_base: Optional[str] = None,
api_key: Optional[str] = None,
aembedding: Optional[bool] = None,
timeout: Optional[Union[float, httpx.Timeout]] = httpx.Timeout(None),
client: Optional[Union[HTTPHandler, AsyncHTTPHandler]] = None,
):
headers = validate_environment(api_key, headers=headers)
embed_url = complete_api_base or "https://api.cohere.ai/v1/embed"
model = model
data = data or CohereEmbeddingConfig()._transform_request(
model=model, input=input, inference_params=optional_params
)
## ROUTING
if aembedding is True:
return async_embedding(
model=model,
data=data,
input=input,
model_response=model_response,
timeout=timeout,
logging_obj=logging_obj,
optional_params=optional_params,
api_base=embed_url,
api_key=api_key,
headers=headers,
encoding=encoding,
client=(
client
if client is not None and isinstance(client, AsyncHTTPHandler)
else None
),
)
## LOGGING
logging_obj.pre_call(
input=input,
api_key=api_key,
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
if client is None or not isinstance(client, HTTPHandler):
client = HTTPHandler(concurrent_limit=1)
response = client.post(embed_url, headers=headers, data=json.dumps(data))
return CohereEmbeddingConfig()._transform_response(
response=response,
api_key=api_key,
logging_obj=logging_obj,
data=data,
model_response=model_response,
model=model,
encoding=encoding,
input=input,
)