litellm-mirror/tests/llm_translation/base_llm_unit_tests.py
2025-04-23 22:10:46 -07:00

1532 lines
No EOL
55 KiB
Python

import httpx
import json
import pytest
import sys
from typing import Any, Dict, List
from unittest.mock import MagicMock, Mock, patch
import os
import uuid
import time
import base64
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm.exceptions import BadRequestError
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.utils import (
CustomStreamWrapper,
get_supported_openai_params,
get_optional_params,
ProviderConfigManager,
)
from litellm.main import stream_chunk_builder
from typing import Union
from litellm.types.utils import Usage, ModelResponse
# test_example.py
from abc import ABC, abstractmethod
from openai import OpenAI
def _usage_format_tests(usage: litellm.Usage):
"""
OpenAI prompt caching
- prompt_tokens = sum of non-cache hit tokens + cache-hit tokens
- total_tokens = prompt_tokens + completion_tokens
Example
```
"usage": {
"prompt_tokens": 2006,
"completion_tokens": 300,
"total_tokens": 2306,
"prompt_tokens_details": {
"cached_tokens": 1920
},
"completion_tokens_details": {
"reasoning_tokens": 0
}
# ANTHROPIC_ONLY #
"cache_creation_input_tokens": 0
}
```
"""
print(f"usage={usage}")
assert usage.total_tokens == usage.prompt_tokens + usage.completion_tokens
assert usage.prompt_tokens > usage.prompt_tokens_details.cached_tokens
class BaseLLMChatTest(ABC):
"""
Abstract base test class that enforces a common test across all test classes.
"""
@property
def completion_function(self):
return litellm.completion
@property
def async_completion_function(self):
return litellm.acompletion
@abstractmethod
def get_base_completion_call_args(self) -> dict:
"""Must return the base completion call args"""
pass
def get_base_completion_call_args_with_reasoning_model(self) -> dict:
"""Must return the base completion call args with reasoning_effort"""
return {}
def test_developer_role_translation(self):
"""
Test that the developer role is translated correctly for non-OpenAI providers.
Translate `developer` role to `system` role for non-OpenAI providers.
"""
base_completion_call_args = self.get_base_completion_call_args()
messages = [
{
"role": "developer",
"content": "Be a good bot!",
},
{
"role": "user",
"content": [{"type": "text", "text": "Hello, how are you?"}],
},
]
try:
response = self.completion_function(
**base_completion_call_args,
messages=messages,
)
assert response is not None
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
assert response.choices[0].message.content is not None
def test_content_list_handling(self):
"""Check if content list is supported by LLM API"""
base_completion_call_args = self.get_base_completion_call_args()
messages = [
{
"role": "user",
"content": [{"type": "text", "text": "Hello, how are you?"}],
}
]
try:
response = self.completion_function(
**base_completion_call_args,
messages=messages,
)
assert response is not None
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
# for OpenAI the content contains the JSON schema, so we need to assert that the content is not None
assert response.choices[0].message.content is not None
def test_streaming(self):
"""Check if litellm handles streaming correctly"""
base_completion_call_args = self.get_base_completion_call_args()
litellm.set_verbose = True
messages = [
{
"role": "user",
"content": [{"type": "text", "text": "Hello, how are you?"}],
}
]
try:
response = self.completion_function(
**base_completion_call_args,
messages=messages,
stream=True,
)
assert response is not None
assert isinstance(response, CustomStreamWrapper)
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
# for OpenAI the content contains the JSON schema, so we need to assert that the content is not None
chunks = []
for chunk in response:
print(chunk)
chunks.append(chunk)
resp = litellm.stream_chunk_builder(chunks=chunks)
print(resp)
# assert resp.usage.prompt_tokens > 0
# assert resp.usage.completion_tokens > 0
# assert resp.usage.total_tokens > 0
def test_pydantic_model_input(self):
litellm.set_verbose = True
from litellm import completion, Message
base_completion_call_args = self.get_base_completion_call_args()
messages = [Message(content="Hello, how are you?", role="user")]
self.completion_function(**base_completion_call_args, messages=messages)
@pytest.mark.parametrize("image_url", ["str", "dict"])
def test_pdf_handling(self, pdf_messages, image_url):
from litellm.utils import supports_pdf_input
if image_url == "str":
image_url = pdf_messages
elif image_url == "dict":
image_url = {"url": pdf_messages}
image_content = [
{"type": "text", "text": "What's this file about?"},
{
"type": "image_url",
"image_url": image_url,
},
]
image_messages = [{"role": "user", "content": image_content}]
base_completion_call_args = self.get_base_completion_call_args()
if not supports_pdf_input(base_completion_call_args["model"], None):
pytest.skip("Model does not support image input")
response = self.completion_function(
**base_completion_call_args,
messages=image_messages,
)
assert response is not None
def test_file_data_unit_test(self, pdf_messages):
from litellm.utils import supports_pdf_input, return_raw_request
from litellm.types.utils import CallTypes
from litellm.litellm_core_utils.prompt_templates.factory import convert_to_anthropic_image_obj
media_chunk = convert_to_anthropic_image_obj(
openai_image_url=pdf_messages,
format=None,
)
file_content = [
{"type": "text", "text": "What's this file about?"},
{
"type": "file",
"file": {
"file_data": pdf_messages,
}
},
]
image_messages = [{"role": "user", "content": file_content}]
base_completion_call_args = self.get_base_completion_call_args()
if not supports_pdf_input(base_completion_call_args["model"], None):
pytest.skip("Model does not support image input")
raw_request = return_raw_request(
endpoint=CallTypes.completion,
kwargs={**base_completion_call_args, "messages": image_messages},
)
print("RAW REQUEST", raw_request)
assert media_chunk["data"] in json.dumps(raw_request)
def test_message_with_name(self):
try:
litellm.set_verbose = True
base_completion_call_args = self.get_base_completion_call_args()
messages = [
{"role": "user", "content": "Hello", "name": "test_name"},
]
response = self.completion_function(
**base_completion_call_args, messages=messages
)
assert response is not None
except litellm.RateLimitError:
pass
@pytest.mark.parametrize(
"response_format",
[
{"type": "json_object"},
{"type": "text"},
],
)
@pytest.mark.flaky(retries=6, delay=1)
def test_json_response_format(self, response_format):
"""
Test that the JSON response format is supported by the LLM API
"""
from litellm.utils import supports_response_schema
base_completion_call_args = self.get_base_completion_call_args()
litellm.set_verbose = True
if not supports_response_schema(base_completion_call_args["model"], None):
pytest.skip("Model does not support response schema")
messages = [
{
"role": "system",
"content": "Your output should be a JSON object with no additional properties. ",
},
{
"role": "user",
"content": "Respond with this in json. city=San Francisco, state=CA, weather=sunny, temp=60",
},
]
response = self.completion_function(
**base_completion_call_args,
messages=messages,
response_format=response_format,
)
print(f"response={response}")
# OpenAI guarantees that the JSON schema is returned in the content
# relevant issue: https://github.com/BerriAI/litellm/issues/6741
assert response.choices[0].message.content is not None
@pytest.mark.parametrize(
"response_format",
[
{"type": "text"},
],
)
@pytest.mark.flaky(retries=6, delay=1)
def test_response_format_type_text_with_tool_calls_no_tool_choice(
self, response_format
):
base_completion_call_args = self.get_base_completion_call_args()
messages = [
{"role": "user", "content": "What's the weather like in Boston today?"},
]
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
},
}
]
try:
print(f"MAKING LLM CALL")
response = self.completion_function(
**base_completion_call_args,
messages=messages,
response_format=response_format,
tools=tools,
drop_params=True,
)
print(f"RESPONSE={response}")
except litellm.ContextWindowExceededError:
pytest.skip("Model exceeded context window")
assert response is not None
def test_response_format_type_text(self):
"""
Test that the response format type text does not lead to tool calls
"""
from litellm import LlmProviders
base_completion_call_args = self.get_base_completion_call_args()
litellm.set_verbose = True
_, provider, _, _ = litellm.get_llm_provider(
model=base_completion_call_args["model"]
)
provider_config = ProviderConfigManager.get_provider_chat_config(
base_completion_call_args["model"], LlmProviders(provider)
)
print(f"provider_config={provider_config}")
translated_params = provider_config.map_openai_params(
non_default_params={"response_format": {"type": "text"}},
optional_params={},
model=base_completion_call_args["model"],
drop_params=False,
)
assert "tool_choice" not in translated_params
assert (
"tools" not in translated_params
), f"Got tools={translated_params['tools']}, expected no tools"
print(f"translated_params={translated_params}")
@pytest.mark.flaky(retries=6, delay=1)
def test_json_response_pydantic_obj(self):
litellm._turn_on_debug()
from pydantic import BaseModel
from litellm.utils import supports_response_schema
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
class TestModel(BaseModel):
first_response: str
base_completion_call_args = self.get_base_completion_call_args()
if not supports_response_schema(base_completion_call_args["model"], None):
pytest.skip("Model does not support response schema")
try:
res = self.completion_function(
**base_completion_call_args,
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{
"role": "user",
"content": "What is the capital of France?",
},
],
response_format=TestModel,
timeout=5,
)
assert res is not None
print(res.choices[0].message)
assert res.choices[0].message.content is not None
assert res.choices[0].message.tool_calls is None
except litellm.Timeout:
pytest.skip("Model took too long to respond")
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
@pytest.mark.flaky(retries=6, delay=1)
def test_json_response_pydantic_obj_nested_obj(self):
litellm.set_verbose = True
from pydantic import BaseModel
from litellm.utils import supports_response_schema
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
@pytest.mark.flaky(retries=6, delay=1)
def test_json_response_nested_pydantic_obj(self):
from pydantic import BaseModel
from litellm.utils import supports_response_schema
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
class EventsList(BaseModel):
events: list[CalendarEvent]
messages = [
{"role": "user", "content": "List 5 important events in the XIX century"}
]
base_completion_call_args = self.get_base_completion_call_args()
if not supports_response_schema(base_completion_call_args["model"], None):
pytest.skip(
f"Model={base_completion_call_args['model']} does not support response schema"
)
try:
res = self.completion_function(
**base_completion_call_args,
messages=messages,
response_format=EventsList,
timeout=60,
)
assert res is not None
print(res.choices[0].message)
assert res.choices[0].message.content is not None
assert res.choices[0].message.tool_calls is None
except litellm.Timeout:
pytest.skip("Model took too long to respond")
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
@pytest.mark.flaky(retries=6, delay=1)
def test_json_response_nested_json_schema(self):
"""
PROD Test: ensure nested json schema sent to proxy works as expected.
"""
litellm._turn_on_debug()
from pydantic import BaseModel
from litellm.utils import supports_response_schema
from litellm.llms.base_llm.base_utils import type_to_response_format_param
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
class CalendarEvent(BaseModel):
name: str
date: str
participants: list[str]
class EventsList(BaseModel):
events: list[CalendarEvent]
response_format = type_to_response_format_param(EventsList)
messages = [
{"role": "user", "content": "List 5 important events in the XIX century"}
]
base_completion_call_args = self.get_base_completion_call_args()
if not supports_response_schema(base_completion_call_args["model"], None):
pytest.skip(
f"Model={base_completion_call_args['model']} does not support response schema"
)
try:
res = self.completion_function(
**base_completion_call_args,
messages=messages,
response_format=response_format,
timeout=60,
)
assert res is not None
print(res.choices[0].message)
assert res.choices[0].message.content is not None
assert res.choices[0].message.tool_calls is None
except litellm.Timeout:
pytest.skip("Model took too long to respond")
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
@pytest.mark.flaky(retries=6, delay=1)
def test_json_response_format_stream(self):
"""
Test that the JSON response format with streaming is supported by the LLM API
"""
from litellm.utils import supports_response_schema
base_completion_call_args = self.get_base_completion_call_args()
litellm.set_verbose = True
base_completion_call_args = self.get_base_completion_call_args()
if not supports_response_schema(base_completion_call_args["model"], None):
pytest.skip("Model does not support response schema")
messages = [
{
"role": "system",
"content": "Your output should be a JSON object with no additional properties. ",
},
{
"role": "user",
"content": "Respond with this in json. city=San Francisco, state=CA, weather=sunny, temp=60",
},
]
try:
response = self.completion_function(
**base_completion_call_args,
messages=messages,
response_format={"type": "json_object"},
stream=True,
)
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
print(response)
content = ""
for chunk in response:
content += chunk.choices[0].delta.content or ""
print(f"content={content}<END>")
# OpenAI guarantees that the JSON schema is returned in the content
# relevant issue: https://github.com/BerriAI/litellm/issues/6741
# we need to assert that the JSON schema was returned in the content, (for Anthropic we were returning it as part of the tool call)
assert content is not None
assert len(content) > 0
@pytest.fixture
def tool_call_no_arguments(self):
return {
"role": "assistant",
"content": "",
"tool_calls": [
{
"id": "call_2c384bc6-de46-4f29-8adc-60dd5805d305",
"function": {"name": "Get-FAQ", "arguments": "{}"},
"type": "function",
}
],
}
@abstractmethod
def test_tool_call_no_arguments(self, tool_call_no_arguments):
"""Test that tool calls with no arguments is translated correctly. Relevant issue: https://github.com/BerriAI/litellm/issues/6833"""
pass
@pytest.mark.parametrize("detail", [None, "low", "high"])
@pytest.mark.parametrize(
"image_url",
[
"http://img1.etsystatic.com/260/0/7813604/il_fullxfull.4226713999_q86e.jpg",
"https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg",
],
)
@pytest.mark.flaky(retries=4, delay=2)
def test_image_url(self, detail, image_url):
litellm.set_verbose = True
from litellm.utils import supports_vision
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
base_completion_call_args = self.get_base_completion_call_args()
if not supports_vision(base_completion_call_args["model"], None):
pytest.skip("Model does not support image input")
elif "http://" in image_url and "fireworks_ai" in base_completion_call_args.get(
"model"
):
pytest.skip("Model does not support http:// input")
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": image_url,
},
},
],
}
]
if detail is not None:
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": {
"url": "https://www.gstatic.com/webp/gallery/1.webp",
"detail": detail,
},
},
],
}
]
try:
response = self.completion_function(
**base_completion_call_args, messages=messages
)
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
assert response is not None
def test_image_url_string(self):
litellm.set_verbose = True
from litellm.utils import supports_vision
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
image_url = "https://upload.wikimedia.org/wikipedia/commons/thumb/d/dd/Gfp-wisconsin-madison-the-nature-boardwalk.jpg/2560px-Gfp-wisconsin-madison-the-nature-boardwalk.jpg"
base_completion_call_args = self.get_base_completion_call_args()
if not supports_vision(base_completion_call_args["model"], None):
pytest.skip("Model does not support image input")
elif "http://" in image_url and "fireworks_ai" in base_completion_call_args.get(
"model"
):
pytest.skip("Model does not support http:// input")
image_url_param = image_url
messages = [
{
"role": "user",
"content": [
{"type": "text", "text": "What's in this image?"},
{
"type": "image_url",
"image_url": image_url_param,
},
],
}
]
try:
response = self.completion_function(
**base_completion_call_args, messages=messages
)
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
assert response is not None
@pytest.mark.flaky(retries=4, delay=1)
def test_prompt_caching(self):
litellm.set_verbose = True
from litellm.utils import supports_prompt_caching
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
base_completion_call_args = self.get_base_completion_call_args()
if not supports_prompt_caching(base_completion_call_args["model"], None):
print("Model does not support prompt caching")
pytest.skip("Model does not support prompt caching")
uuid_str = str(uuid.uuid4())
messages = [
# System Message
{
"role": "system",
"content": [
{
"type": "text",
"text": "Here is the full text of a complex legal agreement {}".format(
uuid_str
)
* 400,
"cache_control": {"type": "ephemeral"},
}
],
},
# marked for caching with the cache_control parameter, so that this checkpoint can read from the previous cache.
{
"role": "user",
"content": [
{
"type": "text",
"text": "What are the key terms and conditions in this agreement?",
"cache_control": {"type": "ephemeral"},
}
],
},
{
"role": "assistant",
"content": "Certainly! the key terms and conditions are the following: the contract is 1 year long for $10/mo",
},
# The final turn is marked with cache-control, for continuing in followups.
{
"role": "user",
"content": [
{
"type": "text",
"text": "What are the key terms and conditions in this agreement?",
"cache_control": {"type": "ephemeral"},
}
],
},
]
try:
## call 1
response = self.completion_function(
**base_completion_call_args,
messages=messages,
max_tokens=10,
)
initial_cost = response._hidden_params["response_cost"]
## call 2
response = self.completion_function(
**base_completion_call_args,
messages=messages,
max_tokens=10,
)
time.sleep(1)
cached_cost = response._hidden_params["response_cost"]
assert (
cached_cost <= initial_cost
), "Cached cost={} should be less than initial cost={}".format(
cached_cost, initial_cost
)
_usage_format_tests(response.usage)
print("response=", response)
print("response.usage=", response.usage)
_usage_format_tests(response.usage)
assert "prompt_tokens_details" in response.usage
assert (
response.usage.prompt_tokens_details.cached_tokens > 0
), f"cached_tokens={response.usage.prompt_tokens_details.cached_tokens} should be greater than 0. Got usage={response.usage}"
except litellm.InternalServerError:
pass
@pytest.fixture
def pdf_messages(self):
import base64
import requests
# URL of the file
url = "https://www.w3.org/WAI/ER/tests/xhtml/testfiles/resources/pdf/dummy.pdf"
response = requests.get(url)
file_data = response.content
encoded_file = base64.b64encode(file_data).decode("utf-8")
url = f"data:application/pdf;base64,{encoded_file}"
return url
@pytest.mark.flaky(retries=3, delay=1)
def test_empty_tools(self):
"""
Related Issue: https://github.com/BerriAI/litellm/issues/9080
"""
try:
from litellm import completion, ModelResponse
litellm.set_verbose = True
litellm._turn_on_debug()
from litellm.utils import supports_function_calling
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
base_completion_call_args = self.get_base_completion_call_args()
if not supports_function_calling(base_completion_call_args["model"], None):
print("Model does not support function calling")
pytest.skip("Model does not support function calling")
response = completion(**base_completion_call_args, messages=[{"role": "user", "content": "Hello, how are you?"}], tools=[]) # just make sure call doesn't fail
print("response: ", response)
assert response is not None
except litellm.ContentPolicyViolationError:
pass
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
except litellm.RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.flaky(retries=3, delay=1)
def test_basic_tool_calling(self):
try:
from litellm import completion, ModelResponse
litellm.set_verbose = True
litellm._turn_on_debug()
from litellm.utils import supports_function_calling
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
base_completion_call_args = self.get_base_completion_call_args()
if not supports_function_calling(base_completion_call_args["model"], None):
print("Model does not support function calling")
pytest.skip("Model does not support function calling")
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {
"type": "string",
"enum": ["celsius", "fahrenheit"],
},
},
"required": ["location"],
},
},
}
]
messages = [
{
"role": "user",
"content": "What's the weather like in Boston today in fahrenheit?",
}
]
request_args = {
"messages": messages,
"tools": tools,
}
request_args.update(self.get_base_completion_call_args())
response: ModelResponse = completion(**request_args) # type: ignore
print(f"response: {response}")
assert response is not None
# if the provider did not return any tool calls do not make a subsequent llm api call
if response.choices[0].message.content is not None:
try:
json.loads(response.choices[0].message.content)
pytest.fail(f"Tool call returned in content instead of tool_calls")
except Exception as e:
print(f"Error: {e}")
pass
if response.choices[0].message.tool_calls is None:
return
# Add any assertions here to check the response
assert isinstance(
response.choices[0].message.tool_calls[0].function.name, str
)
assert isinstance(
response.choices[0].message.tool_calls[0].function.arguments, str
)
messages.append(
response.choices[0].message.model_dump()
) # Add assistant tool invokes
tool_result = (
'{"location": "Boston", "temperature": "72", "unit": "fahrenheit"}'
)
# Add user submitted tool results in the OpenAI format
messages.append(
{
"tool_call_id": response.choices[0].message.tool_calls[0].id,
"role": "tool",
"name": response.choices[0].message.tool_calls[0].function.name,
"content": tool_result,
}
)
# In the second response, Claude should deduce answer from tool results
request_2_args = {
"messages": messages,
"tools": tools,
}
request_2_args.update(self.get_base_completion_call_args())
second_response: ModelResponse = completion(**request_2_args) # type: ignore
print(f"second response: {second_response}")
assert second_response is not None
# either content or tool calls should be present
assert (
second_response.choices[0].message.content is not None
or second_response.choices[0].message.tool_calls is not None
)
except litellm.ServiceUnavailableError:
pytest.skip("Model is overloaded")
except litellm.InternalServerError:
pytest.skip("Model is overloaded")
except litellm.RateLimitError:
pass
except Exception as e:
pytest.fail(f"Error occurred: {e}")
@pytest.mark.flaky(retries=3, delay=1)
@pytest.mark.asyncio
async def test_completion_cost(self):
from litellm import completion_cost
litellm._turn_on_debug()
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
litellm.set_verbose = True
response = await self.async_completion_function(
**self.get_base_completion_call_args(),
messages=[{"role": "user", "content": "Hello, how are you?"}],
)
print(response._hidden_params["response_cost"])
assert response._hidden_params["response_cost"] > 0
@pytest.mark.parametrize("input_type", ["input_audio", "audio_url"])
@pytest.mark.parametrize("format_specified", [True, False])
def test_supports_audio_input(self, input_type, format_specified):
from litellm.utils import return_raw_request, supports_audio_input
from litellm.types.utils import CallTypes
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
litellm.drop_params = True
base_completion_call_args = self.get_base_completion_call_args()
if not supports_audio_input(base_completion_call_args["model"], None):
print("Model does not support audio input")
pytest.skip("Model does not support audio input")
url = "https://openaiassets.blob.core.windows.net/$web/API/docs/audio/alloy.wav"
response = httpx.get(url)
response.raise_for_status()
wav_data = response.content
audio_format = "wav"
encoded_string = base64.b64encode(wav_data).decode("utf-8")
audio_content = [
{
"type": "text",
"text": "What is in this recording?"
}
]
test_file_id = "gs://bucket/file.wav"
if input_type == "input_audio":
if format_specified:
audio_content.append({
"type": "input_audio",
"input_audio": {"data": encoded_string, "format": audio_format},
})
else:
audio_content.append({
"type": "input_audio",
"input_audio": {"data": encoded_string},
})
elif input_type == "audio_url":
audio_content.append(
{
"type": "file",
"file": {
"file_id": test_file_id,
"filename": "my-sample-audio-file",
}
}
)
raw_request = return_raw_request(
endpoint=CallTypes.completion,
kwargs={
**base_completion_call_args,
"modalities": ["text", "audio"],
"audio": {"voice": "alloy", "format": audio_format},
"messages": [
{
"role": "user",
"content": audio_content,
},
]
}
)
print("raw_request: ", raw_request)
if input_type == "input_audio":
assert encoded_string in json.dumps(raw_request), "Audio data not sent to gemini"
elif input_type == "audio_url":
assert test_file_id in json.dumps(raw_request), "Audio URL not sent to gemini"
def test_function_calling_with_tool_response(self):
from litellm.utils import supports_function_calling
from litellm import completion
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
base_completion_call_args = self.get_base_completion_call_args()
if not supports_function_calling(base_completion_call_args["model"], None):
print("Model does not support function calling")
pytest.skip("Model does not support function calling")
def get_weather(city: str):
return f"City: {city}, Weather: Sunny with 34 degree Celcius"
TOOLS = [
{
"type": "function",
"function": {
"name": "get_weather",
"description": "Get the weather in a city",
"parameters": {
"type": "object",
"properties": {
"city": {
"type": "string",
"description": "The city to get the weather for",
}
},
"required": ["city"],
"additionalProperties": False,
},
"strict": True,
},
}
]
messages = [{ "content": "How is the weather in Mumbai?","role": "user"}]
response, iteration = "", 0
while True:
if response:
break
# Create a streaming response with tool calling enabled
stream = completion(
**base_completion_call_args,
messages=messages,
tools=TOOLS,
stream=True,
)
final_tool_calls = {}
for chunk in stream:
delta = chunk.choices[0].delta
print(delta)
if delta.content:
response += delta.content
elif delta.tool_calls:
for tool_call in chunk.choices[0].delta.tool_calls or []:
index = tool_call.index
if index not in final_tool_calls:
final_tool_calls[index] = tool_call
else:
final_tool_calls[
index
].function.arguments += tool_call.function.arguments
if final_tool_calls:
for tool_call in final_tool_calls.values():
if tool_call.function.name == "get_weather":
city = json.loads(tool_call.function.arguments)["city"]
tool_response = get_weather(city)
messages.append(
{
"role": "assistant",
"tool_calls": [tool_call],
"content": None,
}
)
messages.append(
{
"role": "tool",
"tool_call_id": tool_call.id,
"content": tool_response,
}
)
iteration += 1
if iteration > 2:
print("Something went wrong!")
break
print(response)
def test_reasoning_effort(self):
"""Test that reasoning_effort is passed correctly to the model"""
from litellm.utils import supports_reasoning
from litellm import completion
os.environ["LITELLM_LOCAL_MODEL_COST_MAP"] = "True"
litellm.model_cost = litellm.get_model_cost_map(url="")
base_completion_call_args = self.get_base_completion_call_args_with_reasoning_model()
if len(base_completion_call_args) == 0:
print("base_completion_call_args is empty")
pytest.skip("Model does not support reasoning")
if not supports_reasoning(base_completion_call_args["model"], None):
print("Model does not support reasoning")
pytest.skip("Model does not support reasoning")
_, provider, _, _ = litellm.get_llm_provider(
model=base_completion_call_args["model"]
)
## CHECK PARAM MAPPING
optional_params = get_optional_params(
model=base_completion_call_args["model"],
custom_llm_provider=provider,
reasoning_effort="high",
)
# either accepts reasoning effort or thinking budget
assert "reasoning_effort" in optional_params or "4096" in json.dumps(optional_params)
try:
litellm._turn_on_debug()
response = completion(
**base_completion_call_args,
reasoning_effort="low",
messages=[{"role": "user", "content": "Hello!"}],
)
print(f"response: {response}")
except Exception as e:
pytest.fail(f"Error: {e}")
class BaseOSeriesModelsTest(ABC): # test across azure/openai
@abstractmethod
def get_base_completion_call_args(self):
pass
@abstractmethod
def get_client(self) -> OpenAI:
pass
def test_reasoning_effort(self):
"""Test that reasoning_effort is passed correctly to the model"""
from litellm import completion
client = self.get_client()
completion_args = self.get_base_completion_call_args()
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
completion(
**completion_args,
reasoning_effort="low",
messages=[{"role": "user", "content": "Hello!"}],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert request_body["reasoning_effort"] == "low"
def test_developer_role_translation(self):
"""Test that developer role is translated correctly to system role for non-OpenAI providers"""
from litellm import completion
client = self.get_client()
completion_args = self.get_base_completion_call_args()
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
completion(
**completion_args,
reasoning_effort="low",
messages=[
{"role": "developer", "content": "Be a good bot!"},
{"role": "user", "content": "Hello!"},
],
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert (
request_body["messages"][0]["role"] == "developer"
), "Got={} instead of system".format(request_body["messages"][0]["role"])
assert request_body["messages"][0]["content"] == "Be a good bot!"
def test_completion_o_series_models_temperature(self):
"""
Test that temperature is not passed to O-series models
"""
try:
from litellm import completion
client = self.get_client()
completion_args = self.get_base_completion_call_args()
with patch.object(
client.chat.completions.with_raw_response, "create"
) as mock_client:
try:
completion(
**completion_args,
temperature=0.0,
messages=[
{
"role": "user",
"content": "Hello, world!",
}
],
drop_params=True,
client=client,
)
except Exception as e:
print(f"Error: {e}")
mock_client.assert_called_once()
request_body = mock_client.call_args.kwargs
print("request_body: ", request_body)
assert (
"temperature" not in request_body
), "temperature should not be in the request body"
except Exception as e:
pytest.fail(f"Error occurred: {e}")
class BaseAnthropicChatTest(ABC):
"""
Ensures consistent result across anthropic model usage
"""
@abstractmethod
def get_base_completion_call_args(self) -> dict:
"""Must return the base completion call args"""
pass
@abstractmethod
def get_base_completion_call_args_with_thinking(self) -> dict:
"""Must return the base completion call args"""
pass
@property
def completion_function(self):
return litellm.completion
def test_anthropic_response_format_streaming_vs_non_streaming(self):
args = {
"messages": [
{
"content": "Your goal is to summarize the previous agent's thinking process into short descriptions to let user better understand the research progress. If no information is available, just say generic phrase like 'Doing some research...' with the given output format. Make sure to adhere to the output format no matter what, even if you don't have any information or you are not allowed to respond to the given input information (then just say generic phrase like 'Doing some research...').",
"role": "system",
},
{
"role": "user",
"content": "Here is the input data (previous agent's output): \n\n Let's try to refine our search further, focusing more on the technical aspects of home automation and home energy system management:",
},
],
"response_format": {
"type": "json_schema",
"json_schema": {
"name": "final_output",
"strict": True,
"schema": {
"description": 'Progress report for the thinking process\n\nThis model represents a snapshot of the agent\'s current progress during\nthe thinking process, providing a brief description of the current activity.\n\nAttributes:\n agent_doing: Brief description of what the agent is currently doing.\n Should be kept under 10 words. Example: "Learning about home automation"',
"properties": {
"agent_doing": {"title": "Agent Doing", "type": "string"}
},
"required": ["agent_doing"],
"title": "ThinkingStep",
"type": "object",
"additionalProperties": False,
},
},
},
}
base_completion_call_args = self.get_base_completion_call_args()
response = self.completion_function(
**base_completion_call_args, **args, stream=True
)
chunks = []
for chunk in response:
print(f"chunk: {chunk}")
chunks.append(chunk)
print(f"chunks: {chunks}")
built_response = stream_chunk_builder(chunks=chunks)
non_stream_response = self.completion_function(
**base_completion_call_args, **args, stream=False
)
print("built_response.choices[0].message.content", built_response.choices[0].message.content)
print("non_stream_response.choices[0].message.content", non_stream_response.choices[0].message.content)
assert (
json.loads(built_response.choices[0].message.content).keys()
== json.loads(non_stream_response.choices[0].message.content).keys()
), f"Got={json.loads(built_response.choices[0].message.content)}, Expected={json.loads(non_stream_response.choices[0].message.content)}"
def test_completion_thinking_with_response_format(self):
from pydantic import BaseModel
litellm._turn_on_debug()
class RFormat(BaseModel):
question: str
answer: str
base_completion_call_args = self.get_base_completion_call_args_with_thinking()
messages = [{"role": "user", "content": "Generate 5 question + answer pairs"}]
response = self.completion_function(
**base_completion_call_args,
messages=messages,
response_format=RFormat,
)
print(response)
def test_completion_with_thinking_basic(self):
litellm._turn_on_debug()
base_completion_call_args = self.get_base_completion_call_args_with_thinking()
messages = [{"role": "user", "content": "Generate 5 question + answer pairs"}]
response = self.completion_function(
**base_completion_call_args,
messages=messages,
)
print(f"response: {response}")
assert response.choices[0].message.reasoning_content is not None
assert isinstance(response.choices[0].message.reasoning_content, str)
assert response.choices[0].message.thinking_blocks is not None
assert isinstance(response.choices[0].message.thinking_blocks, list)
assert len(response.choices[0].message.thinking_blocks) > 0
assert response.choices[0].message.thinking_blocks[0]["signature"] is not None
def test_anthropic_thinking_output_stream(self):
# litellm.set_verbose = True
try:
base_completion_call_args = self.get_base_completion_call_args_with_thinking()
resp = litellm.completion(
**base_completion_call_args,
messages=[{"role": "user", "content": "Tell me a joke."}],
stream=True,
timeout=10,
)
reasoning_content_exists = False
signature_block_exists = False
tool_call_exists = False
for chunk in resp:
print(f"chunk 2: {chunk}")
if chunk.choices[0].delta.tool_calls:
tool_call_exists = True
if (
hasattr(chunk.choices[0].delta, "thinking_blocks")
and chunk.choices[0].delta.thinking_blocks is not None
and chunk.choices[0].delta.reasoning_content is not None
and isinstance(chunk.choices[0].delta.thinking_blocks, list)
and len(chunk.choices[0].delta.thinking_blocks) > 0
and isinstance(chunk.choices[0].delta.reasoning_content, str)
):
reasoning_content_exists = True
print(chunk.choices[0].delta.thinking_blocks[0])
if chunk.choices[0].delta.thinking_blocks[0].get("signature"):
signature_block_exists = True
assert not tool_call_exists
assert reasoning_content_exists
assert signature_block_exists
except litellm.Timeout:
pytest.skip("Model is timing out")
def test_anthropic_reasoning_effort_thinking_translation(self):
base_completion_call_args = self.get_base_completion_call_args_with_thinking()
_, provider, _, _ = litellm.get_llm_provider(
model=base_completion_call_args["model"]
)
optional_params = get_optional_params(
model=base_completion_call_args.get("model"),
custom_llm_provider=provider,
reasoning_effort="high",
)
assert optional_params["thinking"] == {"type": "enabled", "budget_tokens": 4096}
assert "reasoning_effort" not in optional_params
class BaseReasoningLLMTests(ABC):
"""
Base class for testing reasoning llms
- test that the responses contain reasoning_content
- test that the usage contains reasoning_tokens
"""
@abstractmethod
def get_base_completion_call_args(self) -> dict:
"""Must return the base completion call args"""
pass
@property
def completion_function(self):
return litellm.completion
def test_non_streaming_reasoning_effort(self):
"""
Base test for non-streaming reasoning effort
- Assert that `reasoning_content` is not None from response message
- Assert that `reasoning_tokens` is greater than 0 from usage
"""
litellm._turn_on_debug()
base_completion_call_args = self.get_base_completion_call_args()
response: ModelResponse = self.completion_function(**base_completion_call_args, reasoning_effort="low")
# user gets `reasoning_content` in the response message
assert response.choices[0].message.reasoning_content is not None
assert isinstance(response.choices[0].message.reasoning_content, str)
# user get `reasoning_tokens`
assert response.usage.completion_tokens_details.reasoning_tokens > 0
def test_streaming_reasoning_effort(self):
"""
Base test for streaming reasoning effort
- Assert that `reasoning_content` is not None from streaming response
- Assert that `reasoning_tokens` is greater than 0 from usage
"""
#litellm._turn_on_debug()
base_completion_call_args = self.get_base_completion_call_args()
response: CustomStreamWrapper = self.completion_function(
**base_completion_call_args,
reasoning_effort="low",
stream=True,
stream_options={
"include_usage": True
}
)
resoning_content: str = ""
usage: Usage = None
for chunk in response:
print(chunk)
if hasattr(chunk.choices[0].delta, "reasoning_content"):
resoning_content += chunk.choices[0].delta.reasoning_content
if hasattr(chunk, "usage"):
usage = chunk.usage
assert resoning_content is not None
assert len(resoning_content) > 0
print(f"usage: {usage}")
assert usage.completion_tokens_details.reasoning_tokens > 0