litellm-mirror/tests/llm_translation/test_optional_params.py
Krish Dholakia a65bfab697
Fix calling claude via invoke route + response_format support for claude on invoke route (#8908)
* fix(anthropic_claude3_transformation.py): fix amazon anthropic claude 3 tool calling transformation on invoke route

move to using anthropic config as base

* fix(utils.py): expose anthropic config via providerconfigmanager

* fix(llm_http_handler.py): support json mode on async completion calls

* fix(invoke_handler/make_call): support json mode for anthropic called via bedrock invoke

* fix(anthropic/): handle 'response_format: {"type": "text"}` + migrate amazon claude 3 invoke config to inherit from anthropic config

Prevents error when passing in 'response_format: {"type": "text"}

* test: fix test

* fix(utils.py): fix base invoke provider check

* fix(anthropic_claude3_transformation.py): don't pass 'stream' param

* fix: fix linting errors

* fix(converse_transformation.py): handle response_format type=text for converse
2025-02-28 17:56:26 -08:00

1370 lines
46 KiB
Python

#### What this tests ####
# This tests if get_optional_params works as expected
import asyncio
import inspect
import os
import sys
import time
import traceback
import pytest
sys.path.insert(0, os.path.abspath("../.."))
from unittest.mock import MagicMock, patch
import litellm
from litellm.litellm_core_utils.prompt_templates.factory import map_system_message_pt
from litellm.types.completion import (
ChatCompletionMessageParam,
ChatCompletionSystemMessageParam,
ChatCompletionUserMessageParam,
)
from litellm.utils import (
get_optional_params,
get_optional_params_embeddings,
get_optional_params_image_gen,
)
## get_optional_params_embeddings
### Models: OpenAI, Azure, Bedrock
### Scenarios: w/ optional params + litellm.drop_params = True
def test_supports_system_message():
"""
Check if litellm.completion(...,supports_system_message=False)
"""
messages = [
ChatCompletionSystemMessageParam(role="system", content="Listen here!"),
ChatCompletionUserMessageParam(role="user", content="Hello there!"),
]
new_messages = map_system_message_pt(messages=messages)
assert len(new_messages) == 1
assert new_messages[0]["role"] == "user"
## confirm you can make a openai call with this param
response = litellm.completion(
model="gpt-3.5-turbo", messages=new_messages, supports_system_message=False
)
assert isinstance(response, litellm.ModelResponse)
@pytest.mark.parametrize(
"stop_sequence, expected_count", [("\n", 0), (["\n"], 0), (["finish_reason"], 1)]
)
def test_anthropic_optional_params(stop_sequence, expected_count):
"""
Test if whitespace character optional param is dropped by anthropic
"""
litellm.drop_params = True
optional_params = get_optional_params(
model="claude-3", custom_llm_provider="anthropic", stop=stop_sequence
)
assert len(optional_params) == expected_count
def test_bedrock_optional_params_embeddings():
litellm.drop_params = True
optional_params = get_optional_params_embeddings(
model="", user="John", encoding_format=None, custom_llm_provider="bedrock"
)
assert len(optional_params) == 0
@pytest.mark.parametrize(
"model",
[
"us.anthropic.claude-3-haiku-20240307-v1:0",
"us.meta.llama3-2-11b-instruct-v1:0",
"anthropic.claude-3-haiku-20240307-v1:0",
],
)
def test_bedrock_optional_params_completions(model):
tools = [
{
"type": "function",
"function": {
"name": "structure_output",
"description": "Send structured output back to the user",
"strict": True,
"parameters": {
"type": "object",
"properties": {
"reasoning": {"type": "string"},
"sentiment": {"type": "string"},
},
"required": ["reasoning", "sentiment"],
"additionalProperties": False,
},
"additionalProperties": False,
},
}
]
optional_params = get_optional_params(
model=model,
max_tokens=10,
temperature=0.1,
tools=tools,
custom_llm_provider="bedrock",
)
print(f"optional_params: {optional_params}")
assert len(optional_params) == 4
assert optional_params == {
"maxTokens": 10,
"stream": False,
"temperature": 0.1,
"tools": tools,
}
@pytest.mark.parametrize(
"model",
[
"bedrock/amazon.titan-large",
"bedrock/meta.llama3-2-11b-instruct-v1:0",
"bedrock/ai21.j2-ultra-v1",
"bedrock/cohere.command-nightly",
"bedrock/mistral.mistral-7b",
],
)
def test_bedrock_optional_params_simple(model):
litellm.drop_params = True
get_optional_params(
model=model,
max_tokens=10,
temperature=0.1,
custom_llm_provider="bedrock",
)
@pytest.mark.parametrize(
"model, expected_dimensions, dimensions_kwarg",
[
("bedrock/amazon.titan-embed-text-v1", False, None),
("bedrock/amazon.titan-embed-image-v1", True, "embeddingConfig"),
("bedrock/amazon.titan-embed-text-v2:0", True, "dimensions"),
("bedrock/cohere.embed-multilingual-v3", False, None),
],
)
def test_bedrock_optional_params_embeddings_dimension(
model, expected_dimensions, dimensions_kwarg
):
litellm.drop_params = True
optional_params = get_optional_params_embeddings(
model=model,
user="John",
encoding_format=None,
dimensions=20,
custom_llm_provider="bedrock",
)
if expected_dimensions:
assert len(optional_params) == 1
else:
assert len(optional_params) == 0
if dimensions_kwarg is not None:
assert dimensions_kwarg in optional_params
def test_google_ai_studio_optional_params_embeddings():
optional_params = get_optional_params_embeddings(
model="",
user="John",
encoding_format=None,
custom_llm_provider="gemini",
drop_params=True,
)
assert len(optional_params) == 0
def test_openai_optional_params_embeddings():
litellm.drop_params = True
optional_params = get_optional_params_embeddings(
model="", user="John", encoding_format=None, custom_llm_provider="openai"
)
assert len(optional_params) == 1
assert optional_params["user"] == "John"
def test_azure_optional_params_embeddings():
litellm.drop_params = True
optional_params = get_optional_params_embeddings(
model="chatgpt-v-2",
user="John",
encoding_format=None,
custom_llm_provider="azure",
)
assert len(optional_params) == 1
assert optional_params["user"] == "John"
def test_databricks_optional_params():
litellm.drop_params = True
optional_params = get_optional_params(
model="",
user="John",
custom_llm_provider="databricks",
max_tokens=10,
temperature=0.2,
stream=True,
)
print(f"optional_params: {optional_params}")
assert len(optional_params) == 3
assert "user" not in optional_params
def test_azure_ai_mistral_optional_params():
litellm.drop_params = True
optional_params = get_optional_params(
model="mistral-large-latest",
user="John",
custom_llm_provider="openai",
max_tokens=10,
temperature=0.2,
)
assert "user" not in optional_params
def test_vertex_ai_llama_3_optional_params():
litellm.vertex_llama3_models = ["meta/llama3-405b-instruct-maas"]
litellm.drop_params = True
optional_params = get_optional_params(
model="meta/llama3-405b-instruct-maas",
user="John",
custom_llm_provider="vertex_ai",
max_tokens=10,
temperature=0.2,
)
assert "user" not in optional_params
def test_vertex_ai_mistral_optional_params():
litellm.vertex_mistral_models = ["mistral-large@2407"]
litellm.drop_params = True
optional_params = get_optional_params(
model="mistral-large@2407",
user="John",
custom_llm_provider="vertex_ai",
max_tokens=10,
temperature=0.2,
)
assert "user" not in optional_params
assert "max_tokens" in optional_params
assert "temperature" in optional_params
def test_azure_gpt_optional_params_gpt_vision():
# for OpenAI, Azure all extra params need to get passed as extra_body to OpenAI python. We assert we actually set extra_body here
optional_params = litellm.utils.get_optional_params(
model="",
user="John",
custom_llm_provider="azure",
max_tokens=10,
temperature=0.2,
enhancements={"ocr": {"enabled": True}, "grounding": {"enabled": True}},
dataSources=[
{
"type": "AzureComputerVision",
"parameters": {
"endpoint": "<your_computer_vision_endpoint>",
"key": "<your_computer_vision_key>",
},
}
],
)
print(optional_params)
assert optional_params["max_tokens"] == 10
assert optional_params["temperature"] == 0.2
assert optional_params["extra_body"] == {
"enhancements": {"ocr": {"enabled": True}, "grounding": {"enabled": True}},
"dataSources": [
{
"type": "AzureComputerVision",
"parameters": {
"endpoint": "<your_computer_vision_endpoint>",
"key": "<your_computer_vision_key>",
},
}
],
}
# test_azure_gpt_optional_params_gpt_vision()
def test_azure_gpt_optional_params_gpt_vision_with_extra_body():
# if user passes extra_body, we should not over write it, we should pass it along to OpenAI python
optional_params = litellm.utils.get_optional_params(
model="",
user="John",
custom_llm_provider="azure",
max_tokens=10,
temperature=0.2,
extra_body={
"meta": "hi",
},
enhancements={"ocr": {"enabled": True}, "grounding": {"enabled": True}},
dataSources=[
{
"type": "AzureComputerVision",
"parameters": {
"endpoint": "<your_computer_vision_endpoint>",
"key": "<your_computer_vision_key>",
},
}
],
)
print(optional_params)
assert optional_params["max_tokens"] == 10
assert optional_params["temperature"] == 0.2
assert optional_params["extra_body"] == {
"enhancements": {"ocr": {"enabled": True}, "grounding": {"enabled": True}},
"dataSources": [
{
"type": "AzureComputerVision",
"parameters": {
"endpoint": "<your_computer_vision_endpoint>",
"key": "<your_computer_vision_key>",
},
}
],
"meta": "hi",
}
# test_azure_gpt_optional_params_gpt_vision_with_extra_body()
def test_openai_extra_headers():
optional_params = litellm.utils.get_optional_params(
model="",
user="John",
custom_llm_provider="openai",
max_tokens=10,
temperature=0.2,
extra_headers={"AI-Resource Group": "ishaan-resource"},
)
print(optional_params)
assert optional_params["max_tokens"] == 10
assert optional_params["temperature"] == 0.2
assert optional_params["extra_headers"] == {"AI-Resource Group": "ishaan-resource"}
@pytest.mark.parametrize(
"api_version",
[
"2024-02-01",
"2024-07-01", # potential future version with tool_choice="required" supported
"2023-07-01-preview",
"2024-03-01-preview",
],
)
def test_azure_tool_choice(api_version):
"""
Test azure tool choice on older + new version
"""
litellm.drop_params = True
optional_params = litellm.utils.get_optional_params(
model="chatgpt-v-2",
user="John",
custom_llm_provider="azure",
max_tokens=10,
temperature=0.2,
extra_headers={"AI-Resource Group": "ishaan-resource"},
tool_choice="required",
api_version=api_version,
)
print(f"{optional_params}")
if api_version == "2024-07-01":
assert optional_params["tool_choice"] == "required"
else:
assert (
"tool_choice" not in optional_params
), "tool choice should not be present. Got - tool_choice={} for api version={}".format(
optional_params["tool_choice"], api_version
)
@pytest.mark.parametrize("drop_params", [True, False, None])
def test_dynamic_drop_params(drop_params):
"""
Make a call to cohere w/ drop params = True vs. false.
"""
if drop_params is True:
optional_params = litellm.utils.get_optional_params(
model="command-r",
custom_llm_provider="cohere",
response_format={"type": "json"},
drop_params=drop_params,
)
else:
try:
optional_params = litellm.utils.get_optional_params(
model="command-r",
custom_llm_provider="cohere",
response_format={"type": "json"},
drop_params=drop_params,
)
pytest.fail("Expected to fail")
except Exception as e:
pass
def test_dynamic_drop_params_e2e():
with patch(
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post", new=MagicMock()
) as mock_response:
try:
response = litellm.completion(
model="command-r",
messages=[{"role": "user", "content": "Hey, how's it going?"}],
response_format={"key": "value"},
drop_params=True,
)
except Exception as e:
pass
mock_response.assert_called_once()
print(mock_response.call_args.kwargs["data"])
assert "response_format" not in mock_response.call_args.kwargs["data"]
@pytest.mark.parametrize(
"model, provider, should_drop",
[("command-r", "cohere", True), ("gpt-3.5-turbo", "openai", False)],
)
def test_drop_params_parallel_tool_calls(model, provider, should_drop):
"""
https://github.com/BerriAI/litellm/issues/4584
"""
response = litellm.utils.get_optional_params(
model=model,
custom_llm_provider=provider,
response_format={"type": "json"},
parallel_tool_calls=True,
drop_params=True,
)
print(response)
if should_drop:
assert "response_format" not in response
assert "parallel_tool_calls" not in response
else:
assert "response_format" in response
assert "parallel_tool_calls" in response
def test_dynamic_drop_params_parallel_tool_calls():
"""
https://github.com/BerriAI/litellm/issues/4584
"""
with patch(
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post", new=MagicMock()
) as mock_response:
try:
response = litellm.completion(
model="command-r",
messages=[{"role": "user", "content": "Hey, how's it going?"}],
parallel_tool_calls=True,
drop_params=True,
)
except Exception as e:
pass
mock_response.assert_called_once()
print(mock_response.call_args.kwargs["data"])
assert "parallel_tool_calls" not in mock_response.call_args.kwargs["data"]
@pytest.mark.parametrize("drop_params", [True, False, None])
def test_dynamic_drop_additional_params(drop_params):
"""
Make a call to cohere, dropping 'response_format' specifically
"""
if drop_params is True:
optional_params = litellm.utils.get_optional_params(
model="command-r",
custom_llm_provider="cohere",
response_format={"type": "json"},
additional_drop_params=["response_format"],
)
else:
try:
optional_params = litellm.utils.get_optional_params(
model="command-r",
custom_llm_provider="cohere",
response_format={"type": "json"},
)
pytest.fail("Expected to fail")
except Exception as e:
pass
def test_dynamic_drop_additional_params_stream_options():
"""
Make a call to vertex ai, dropping 'stream_options' specifically
"""
optional_params = litellm.utils.get_optional_params(
model="mistral-large-2411@001",
custom_llm_provider="vertex_ai",
stream_options={"include_usage": True},
additional_drop_params=["stream_options"],
)
assert "stream_options" not in optional_params
def test_dynamic_drop_additional_params_e2e():
with patch(
"litellm.llms.custom_httpx.http_handler.HTTPHandler.post", new=MagicMock()
) as mock_response:
try:
response = litellm.completion(
model="command-r",
messages=[{"role": "user", "content": "Hey, how's it going?"}],
response_format={"key": "value"},
additional_drop_params=["response_format"],
)
except Exception as e:
pass
mock_response.assert_called_once()
print(mock_response.call_args.kwargs["data"])
assert "response_format" not in mock_response.call_args.kwargs["data"]
assert "additional_drop_params" not in mock_response.call_args.kwargs["data"]
def test_get_optional_params_image_gen():
response = litellm.utils.get_optional_params_image_gen(
aws_region_name="us-east-1", custom_llm_provider="openai"
)
print(response)
assert "aws_region_name" not in response
response = litellm.utils.get_optional_params_image_gen(
aws_region_name="us-east-1", custom_llm_provider="bedrock"
)
print(response)
assert "aws_region_name" in response
def test_bedrock_optional_params_embeddings_provider_specific_params():
optional_params = get_optional_params_embeddings(
model="my-custom-model",
custom_llm_provider="huggingface",
wait_for_model=True,
)
assert len(optional_params) == 1
def test_get_optional_params_num_retries():
"""
Relevant issue - https://github.com/BerriAI/litellm/issues/5124
"""
with patch("litellm.main.get_optional_params", new=MagicMock()) as mock_client:
_ = litellm.completion(
model="gpt-3.5-turbo",
messages=[{"role": "user", "content": "Hello world"}],
num_retries=10,
)
mock_client.assert_called()
print(f"mock_client.call_args: {mock_client.call_args}")
assert mock_client.call_args.kwargs["max_retries"] == 10
@pytest.mark.parametrize(
"provider",
[
"vertex_ai",
"vertex_ai_beta",
],
)
def test_vertex_safety_settings(provider):
litellm.vertex_ai_safety_settings = [
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE",
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE",
},
]
optional_params = get_optional_params(
model="gemini-1.5-pro", custom_llm_provider=provider
)
assert len(optional_params) == 1
@pytest.mark.parametrize(
"model, provider, expectedAddProp",
[("gemini-1.5-pro", "vertex_ai_beta", False), ("gpt-3.5-turbo", "openai", True)],
)
def test_parse_additional_properties_json_schema(model, provider, expectedAddProp):
optional_params = get_optional_params(
model=model,
custom_llm_provider=provider,
response_format={
"type": "json_schema",
"json_schema": {
"name": "math_reasoning",
"schema": {
"type": "object",
"properties": {
"steps": {
"type": "array",
"items": {
"type": "object",
"properties": {
"explanation": {"type": "string"},
"output": {"type": "string"},
},
"required": ["explanation", "output"],
"additionalProperties": False,
},
},
"final_answer": {"type": "string"},
},
"required": ["steps", "final_answer"],
"additionalProperties": False,
},
"strict": True,
},
},
)
print(optional_params)
if provider == "vertex_ai_beta":
schema = optional_params["response_schema"]
elif provider == "openai":
schema = optional_params["response_format"]["json_schema"]["schema"]
assert ("additionalProperties" in schema) == expectedAddProp
def test_o1_model_params():
optional_params = get_optional_params(
model="o1-preview-2024-09-12",
custom_llm_provider="openai",
seed=10,
user="John",
)
assert optional_params["seed"] == 10
assert optional_params["user"] == "John"
def test_azure_o1_model_params():
optional_params = get_optional_params(
model="o1-preview",
custom_llm_provider="azure",
seed=10,
user="John",
)
assert optional_params["seed"] == 10
assert optional_params["user"] == "John"
@pytest.mark.parametrize(
"temperature, expected_error",
[(0.2, True), (1, False), (0, True)],
)
@pytest.mark.parametrize("provider", ["openai", "azure"])
def test_o1_model_temperature_params(provider, temperature, expected_error):
if expected_error:
with pytest.raises(litellm.UnsupportedParamsError):
get_optional_params(
model="o1-preview",
custom_llm_provider=provider,
temperature=temperature,
)
else:
get_optional_params(
model="o1-preview-2024-09-12",
custom_llm_provider="openai",
temperature=temperature,
)
def test_unmapped_gemini_model_params():
"""
Test if unmapped gemini model optional params are translated correctly
"""
optional_params = get_optional_params(
model="gemini-new-model",
custom_llm_provider="vertex_ai",
stop="stop_word",
)
assert optional_params["stop_sequences"] == ["stop_word"]
def _check_additional_properties(schema):
if isinstance(schema, dict):
# Remove the 'additionalProperties' key if it exists and is set to False
if "additionalProperties" in schema or "strict" in schema:
raise ValueError(
"additionalProperties and strict should not be in the schema"
)
# Recursively process all dictionary values
for key, value in schema.items():
_check_additional_properties(value)
elif isinstance(schema, list):
# Recursively process all items in the list
for item in schema:
_check_additional_properties(item)
return schema
@pytest.mark.parametrize(
"provider, model",
[
("hosted_vllm", "my-vllm-model"),
("gemini", "gemini-1.5-pro"),
("vertex_ai", "gemini-1.5-pro"),
],
)
def test_drop_nested_params_add_prop_and_strict(provider, model):
"""
Relevant issue - https://github.com/BerriAI/litellm/issues/5288
Relevant issue - https://github.com/BerriAI/litellm/issues/6136
"""
tools = [
{
"type": "function",
"function": {
"name": "structure_output",
"description": "Send structured output back to the user",
"strict": True,
"parameters": {
"type": "object",
"properties": {
"reasoning": {"type": "string"},
"sentiment": {"type": "string"},
},
"required": ["reasoning", "sentiment"],
"additionalProperties": False,
},
"additionalProperties": False,
},
}
]
tool_choice = {"type": "function", "function": {"name": "structure_output"}}
optional_params = get_optional_params(
model=model,
custom_llm_provider=provider,
temperature=0.2,
tools=tools,
tool_choice=tool_choice,
additional_drop_params=[
["tools", "function", "strict"],
["tools", "function", "additionalProperties"],
],
)
_check_additional_properties(optional_params["tools"])
def test_hosted_vllm_tool_param():
"""
Relevant issue - https://github.com/BerriAI/litellm/issues/6228
"""
optional_params = get_optional_params(
model="my-vllm-model",
custom_llm_provider="hosted_vllm",
temperature=0.2,
tools=None,
tool_choice=None,
)
assert "tools" not in optional_params
assert "tool_choice" not in optional_params
def test_unmapped_vertex_anthropic_model():
optional_params = get_optional_params(
model="claude-3-5-sonnet-v250@20241022",
custom_llm_provider="vertex_ai",
max_retries=10,
)
assert "max_retries" not in optional_params
@pytest.mark.parametrize("provider", ["anthropic", "vertex_ai"])
def test_anthropic_parallel_tool_calls(provider):
optional_params = get_optional_params(
model="claude-3-5-sonnet-v250@20241022",
custom_llm_provider=provider,
parallel_tool_calls=True,
)
print(f"optional_params: {optional_params}")
assert optional_params["tool_choice"]["disable_parallel_tool_use"] is False
def test_anthropic_computer_tool_use():
tools = [
{
"type": "computer_20241022",
"function": {
"name": "computer",
"parameters": {
"display_height_px": 100,
"display_width_px": 100,
"display_number": 1,
},
},
}
]
optional_params = get_optional_params(
model="claude-3-5-sonnet-v250@20241022",
custom_llm_provider="anthropic",
tools=tools,
)
assert optional_params["tools"][0]["type"] == "computer_20241022"
assert optional_params["tools"][0]["display_height_px"] == 100
assert optional_params["tools"][0]["display_width_px"] == 100
assert optional_params["tools"][0]["display_number"] == 1
def test_vertex_schema_field():
tools = [
{
"type": "function",
"function": {
"name": "json",
"description": "Respond with a JSON object.",
"parameters": {
"type": "object",
"properties": {
"thinking": {
"type": "string",
"description": "Your internal thoughts on different problem details given the guidance.",
},
"problems": {
"type": "array",
"items": {
"type": "object",
"properties": {
"icon": {
"type": "string",
"enum": [
"BarChart2",
"Bell",
],
"description": "The name of a Lucide icon to display",
},
"color": {
"type": "string",
"description": "A Tailwind color class for the icon, e.g., 'text-red-500'",
},
"problem": {
"type": "string",
"description": "The title of the problem being addressed, approximately 3-5 words.",
},
"description": {
"type": "string",
"description": "A brief explanation of the problem, approximately 20 words.",
},
"impacts": {
"type": "array",
"items": {"type": "string"},
"description": "A list of potential impacts or consequences of the problem, approximately 3 words each.",
},
"automations": {
"type": "array",
"items": {"type": "string"},
"description": "A list of potential automations to address the problem, approximately 3-5 words each.",
},
},
"required": [
"icon",
"color",
"problem",
"description",
"impacts",
"automations",
],
"additionalProperties": False,
},
"description": "Please generate problem cards that match this guidance.",
},
},
"required": ["thinking", "problems"],
"additionalProperties": False,
"$schema": "http://json-schema.org/draft-07/schema#",
},
},
}
]
optional_params = get_optional_params(
model="gemini-1.5-flash",
custom_llm_provider="vertex_ai",
tools=tools,
)
print(optional_params)
print(optional_params["tools"][0]["function_declarations"][0])
assert (
"$schema"
not in optional_params["tools"][0]["function_declarations"][0]["parameters"]
)
def test_watsonx_tool_choice():
optional_params = get_optional_params(
model="gemini-1.5-pro", custom_llm_provider="watsonx", tool_choice="auto"
)
print(optional_params)
assert optional_params["tool_choice_options"] == "auto"
def test_watsonx_text_top_k():
optional_params = get_optional_params(
model="gemini-1.5-pro", custom_llm_provider="watsonx_text", top_k=10
)
print(optional_params)
assert optional_params["top_k"] == 10
def test_together_ai_model_params():
optional_params = get_optional_params(
model="together_ai", custom_llm_provider="together_ai", logprobs=1
)
print(optional_params)
assert optional_params["logprobs"] == 1
def test_forward_user_param():
from litellm.utils import get_supported_openai_params, get_optional_params
model = "claude-3-5-sonnet-20240620"
optional_params = get_optional_params(
model=model,
user="test_user",
custom_llm_provider="anthropic",
)
assert optional_params["metadata"]["user_id"] == "test_user"
def test_lm_studio_embedding_params():
optional_params = get_optional_params_embeddings(
model="lm_studio/gemma2-9b-it",
custom_llm_provider="lm_studio",
dimensions=1024,
drop_params=True,
)
assert len(optional_params) == 0
def test_ollama_pydantic_obj():
from pydantic import BaseModel
class ResponseFormat(BaseModel):
x: str
y: str
get_optional_params(
model="qwen2:0.5b",
custom_llm_provider="ollama",
response_format=ResponseFormat,
)
def test_gemini_frequency_penalty():
from litellm.utils import get_supported_openai_params
optional_params = get_supported_openai_params(
model="gemini-1.5-flash",
custom_llm_provider="vertex_ai",
request_type="chat_completion",
)
assert optional_params is not None
assert "frequency_penalty" in optional_params
def test_litellm_proxy_claude_3_5_sonnet():
tools = [
{
"type": "function",
"function": {
"name": "get_current_weather",
"description": "Get the current weather in a given location",
"parameters": {
"type": "object",
"properties": {
"location": {
"type": "string",
"description": "The city and state, e.g. San Francisco, CA",
},
"unit": {"type": "string", "enum": ["celsius", "fahrenheit"]},
},
"required": ["location"],
},
},
}
]
tool_choice = "auto"
optional_params = get_optional_params(
model="claude-3-5-sonnet",
custom_llm_provider="litellm_proxy",
tools=tools,
tool_choice=tool_choice,
)
assert optional_params["tools"] == tools
assert optional_params["tool_choice"] == tool_choice
def test_is_vertex_anthropic_model():
assert (
litellm.VertexAIAnthropicConfig().is_supported_model(
model="claude-3-5-sonnet", custom_llm_provider="litellm_proxy"
)
is False
)
def test_groq_response_format_json_schema():
optional_params = get_optional_params(
model="llama-3.1-70b-versatile",
custom_llm_provider="groq",
response_format={"type": "json_object"},
)
assert optional_params is not None
assert "response_format" in optional_params
assert optional_params["response_format"]["type"] == "json_object"
def test_gemini_frequency_penalty():
optional_params = get_optional_params(
model="gemini-1.5-flash", custom_llm_provider="gemini", frequency_penalty=0.5
)
assert optional_params["frequency_penalty"] == 0.5
def test_azure_prediction_param():
optional_params = get_optional_params(
model="chatgpt-v2",
custom_llm_provider="azure",
prediction={
"type": "content",
"content": "LiteLLM is a very useful way to connect to a variety of LLMs.",
},
)
assert optional_params["prediction"] == {
"type": "content",
"content": "LiteLLM is a very useful way to connect to a variety of LLMs.",
}
def test_vertex_ai_ft_llama():
optional_params = get_optional_params(
model="1984786713414729728",
custom_llm_provider="vertex_ai",
frequency_penalty=0.5,
max_retries=10,
)
assert optional_params["frequency_penalty"] == 0.5
assert "max_retries" not in optional_params
@pytest.mark.parametrize(
"model, expected_thinking",
[
("claude-3-5-sonnet", False),
("claude-3-7-sonnet", True),
("gpt-3.5-turbo", False),
],
)
def test_anthropic_thinking_param(model, expected_thinking):
optional_params = get_optional_params(
model=model,
custom_llm_provider="anthropic",
thinking={"type": "enabled", "budget_tokens": 1024},
drop_params=True,
)
if expected_thinking:
assert "thinking" in optional_params
else:
assert "thinking" not in optional_params
def test_bedrock_invoke_anthropic_max_tokens():
passed_params = {
"model": "invoke/us.anthropic.claude-3-5-sonnet-20240620-v1:0",
"functions": None,
"function_call": None,
"temperature": 0.8,
"top_p": None,
"n": 1,
"stream": False,
"stream_options": None,
"stop": None,
"max_tokens": None,
"max_completion_tokens": 1024,
"modalities": None,
"prediction": None,
"audio": None,
"presence_penalty": None,
"frequency_penalty": None,
"logit_bias": None,
"user": None,
"custom_llm_provider": "bedrock",
"response_format": {"type": "text"},
"seed": None,
"tools": [
{
"type": "function",
"function": {
"name": "generate_plan",
"description": "Generate a plan to execute the task using only the tools outlined in your context.",
"input_schema": {
"type": "object",
"properties": {
"steps": {
"type": "array",
"items": {
"type": "object",
"properties": {
"type": {
"type": "string",
"description": "The type of step to execute",
},
"tool_name": {
"type": "string",
"description": "The name of the tool to use for this step",
},
"tool_input": {
"type": "object",
"description": "The input to pass to the tool. Make sure this complies with the schema for the tool.",
},
"tool_output": {
"type": "object",
"description": "(Optional) The output from the tool if needed for future steps. Make sure this complies with the schema for the tool.",
},
},
"required": ["type"],
},
}
},
},
},
},
{
"type": "function",
"function": {
"name": "generate_wire_tool",
"description": "Create a wire transfer with complete wire instructions",
"input_schema": {
"type": "object",
"properties": {
"company_id": {
"type": "integer",
"description": "The ID of the company receiving the investment",
},
"investment_id": {
"type": "integer",
"description": "The ID of the investment memo",
},
"dollar_amount": {
"type": "number",
"description": "The amount to wire in USD",
},
"wiring_instructions": {
"type": "object",
"description": "Complete bank account and routing information for the wire",
"properties": {
"account_name": {
"type": "string",
"description": "Name on the bank account",
},
"address_1": {
"type": "string",
"description": "Primary address line",
},
"address_2": {
"type": "string",
"description": "Secondary address line (optional)",
},
"city": {"type": "string"},
"state": {"type": "string"},
"zip": {"type": "string"},
"country": {"type": "string", "default": "US"},
"bank_name": {"type": "string"},
"account_number": {"type": "string"},
"routing_number": {"type": "string"},
"account_type": {
"type": "string",
"enum": ["checking", "savings"],
"default": "checking",
},
"swift_code": {
"type": "string",
"description": "Required for international wires",
},
"iban": {
"type": "string",
"description": "Required for some international wires",
},
"bank_city": {"type": "string"},
"bank_state": {"type": "string"},
"bank_country": {"type": "string", "default": "US"},
"bank_to_bank_instructions": {
"type": "string",
"description": "Additional instructions for the bank (optional)",
},
"intermediary_bank_name": {
"type": "string",
"description": "Name of intermediary bank if required (optional)",
},
},
"required": [
"account_name",
"address_1",
"country",
"bank_name",
"account_number",
"routing_number",
"account_type",
"bank_country",
],
},
},
"required": [
"company_id",
"investment_id",
"dollar_amount",
"wiring_instructions",
],
},
},
},
{
"type": "function",
"function": {
"name": "search_companies",
"description": "Search for companies by name or other criteria to get their IDs",
"input_schema": {
"type": "object",
"properties": {
"query": {
"type": "string",
"description": "Name or part of name to search for",
},
"batch": {
"type": "string",
"description": 'Optional batch filter (e.g., "W21", "S22")',
},
"status": {
"type": "string",
"enum": [
"live",
"dead",
"adrift",
"exited",
"went_public",
"all",
],
"description": "Filter by company status",
"default": "live",
},
"limit": {
"type": "integer",
"description": "Maximum number of results to return",
"default": 10,
},
},
"required": ["query"],
},
"output_schema": {
"type": "object",
"properties": {
"status": {
"type": "string",
"description": "Success or error status",
},
"results": {
"type": "array",
"description": "List of companies matching the search criteria",
"items": {
"type": "object",
"properties": {
"id": {
"type": "integer",
"description": "Company ID to use in other API calls",
},
"name": {"type": "string"},
"batch": {"type": "string"},
"status": {"type": "string"},
"valuation": {"type": "string"},
"url": {"type": "string"},
"description": {"type": "string"},
"founders": {"type": "string"},
},
},
},
"results_count": {
"type": "integer",
"description": "Number of companies returned",
},
"total_matches": {
"type": "integer",
"description": "Total number of matches found",
},
},
},
},
},
],
"tool_choice": None,
"max_retries": 0,
"logprobs": None,
"top_logprobs": None,
"extra_headers": None,
"api_version": None,
"parallel_tool_calls": None,
"drop_params": True,
"reasoning_effort": None,
"additional_drop_params": None,
"messages": [
{
"role": "system",
"content": "You are an AI assistant that helps prepare a wire for a pro rata investment.",
},
{"role": "user", "content": [{"type": "text", "text": "hi"}]},
],
"thinking": None,
"kwargs": {},
}
optional_params = get_optional_params(**passed_params)
print(f"optional_params: {optional_params}")
assert "max_tokens_to_sample" not in optional_params
assert optional_params["max_tokens"] == 1024