litellm-mirror/tests/local_testing/test_add_update_models.py
Ishaan Jaff 8024300825
(UI) Improvements to Add Team Model Flow (#8603)
* ui - use common team dropdown component

* re-use team component

* rename org field on add model

* handle add model submit

* working view model_id and team_id on root models page

* cleaner

* show all fields

* working model info view

* working team info selector

* clean up team id

* new component for model dashboard

* ui show table with dropdown

* make public model names like email

* revert changes to litellm model name

* fix litellm model name

* ui fix public model

* fix mappings

* fix conditional text input

* fix message

* ui fix bulk add models

* _add_team_model_to_db

* move model mgmt helper funcs

* test_add_team_model_to_db

* ui - display model team model name

* fix add model tab

* fix remove redundant info tab on models page

* dont pass model mappings all the way through

* fix jarring model name when adding team models

* fix edit model button

* delete button on model info

* ui fix model dashboard

* fix DeploymentTypedDict

* _is_model_access_group_for_wildcard_route

* test _get_public_model_name

* ui fix viewing public model name

* fix linting error

* fix linting errors

* fix selectedModel logic
2025-02-17 18:37:14 -08:00

333 lines
11 KiB
Python

import sys, os
import traceback
import json
import uuid
from dotenv import load_dotenv
from fastapi import Request
from datetime import datetime
load_dotenv()
import os, io, time
# this file is to test litellm/proxy
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import pytest, logging, asyncio
import litellm, asyncio
from litellm.proxy.proxy_server import add_new_model, update_model, LitellmUserRoles
from litellm._logging import verbose_proxy_logger
from litellm.proxy.utils import PrismaClient, ProxyLogging
from litellm.proxy.management_endpoints.team_endpoints import new_team
verbose_proxy_logger.setLevel(level=logging.DEBUG)
from litellm.caching.caching import DualCache
from litellm.router import (
Deployment,
LiteLLM_Params,
)
from litellm.types.router import ModelInfo, updateDeployment, updateLiteLLMParams
from litellm.proxy._types import UserAPIKeyAuth, NewTeamRequest, LiteLLM_TeamTable
proxy_logging_obj = ProxyLogging(user_api_key_cache=DualCache())
@pytest.fixture
def prisma_client():
from litellm.proxy.proxy_cli import append_query_params
### add connection pool + pool timeout args
params = {"connection_limit": 100, "pool_timeout": 60}
database_url = os.getenv("DATABASE_URL")
modified_url = append_query_params(database_url, params)
os.environ["DATABASE_URL"] = modified_url
os.environ["STORE_MODEL_IN_DB"] = "true"
# Assuming PrismaClient is a class that needs to be instantiated
prisma_client = PrismaClient(
database_url=os.environ["DATABASE_URL"], proxy_logging_obj=proxy_logging_obj
)
# Reset litellm.proxy.proxy_server.prisma_client to None
litellm.proxy.proxy_server.litellm_proxy_budget_name = (
f"litellm-proxy-budget-{time.time()}"
)
litellm.proxy.proxy_server.user_custom_key_generate = None
return prisma_client
@pytest.mark.asyncio
@pytest.mark.skip(reason="new feature, tests passing locally")
async def test_add_new_model(prisma_client):
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
setattr(litellm.proxy.proxy_server, "master_key", "sk-1234")
setattr(litellm.proxy.proxy_server, "store_model_in_db", True)
await litellm.proxy.proxy_server.prisma_client.connect()
from litellm.proxy.proxy_server import user_api_key_cache
import uuid
_new_model_id = f"local-test-{uuid.uuid4().hex}"
await add_new_model(
model_params=Deployment(
model_name="test_model",
litellm_params=LiteLLM_Params(
model="azure/gpt-3.5-turbo",
api_key="test_api_key",
api_base="test_api_base",
rpm=1000,
tpm=1000,
),
model_info=ModelInfo(
id=_new_model_id,
),
),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN.value,
api_key="sk-1234",
user_id="1234",
),
)
_new_models = await prisma_client.db.litellm_proxymodeltable.find_many()
print("_new_models: ", _new_models)
_new_model_in_db = None
for model in _new_models:
print("current model: ", model)
if model.model_info["id"] == _new_model_id:
print("FOUND MODEL: ", model)
_new_model_in_db = model
assert _new_model_in_db is not None
@pytest.mark.parametrize(
"team_id, key_team_id, user_role, expected_result",
[
("1234", "1234", LitellmUserRoles.PROXY_ADMIN.value, True),
(
"1234",
"1235",
LitellmUserRoles.PROXY_ADMIN.value,
True,
), # proxy admin can add models for any team
(None, "1234", LitellmUserRoles.PROXY_ADMIN.value, True),
(None, None, LitellmUserRoles.PROXY_ADMIN.value, True),
(
"1234",
"1234",
LitellmUserRoles.INTERNAL_USER.value,
True,
), # internal users can add models for their team
("1234", "1235", LitellmUserRoles.INTERNAL_USER.value, False),
(None, "1234", LitellmUserRoles.INTERNAL_USER.value, False),
(
None,
None,
LitellmUserRoles.INTERNAL_USER.value,
False,
), # internal users cannot add models by default
],
)
def test_can_add_model(team_id, key_team_id, user_role, expected_result):
from litellm.proxy.proxy_server import check_if_team_id_matches_key
args = {
"team_id": team_id,
"user_api_key_dict": UserAPIKeyAuth(
user_role=user_role,
api_key="sk-1234",
team_id=key_team_id,
),
}
assert check_if_team_id_matches_key(**args) is expected_result
@pytest.mark.asyncio
@pytest.mark.skip(reason="new feature, tests passing locally")
async def test_add_update_model(prisma_client):
# test that existing litellm_params are not updated
# only new / updated params get updated
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
setattr(litellm.proxy.proxy_server, "master_key", "sk-1234")
setattr(litellm.proxy.proxy_server, "store_model_in_db", True)
await litellm.proxy.proxy_server.prisma_client.connect()
from litellm.proxy.proxy_server import user_api_key_cache
import uuid
_new_model_id = f"local-test-{uuid.uuid4().hex}"
await add_new_model(
model_params=Deployment(
model_name="test_model",
litellm_params=LiteLLM_Params(
model="azure/gpt-3.5-turbo",
api_key="test_api_key",
api_base="test_api_base",
rpm=1000,
tpm=1000,
),
model_info=ModelInfo(
id=_new_model_id,
),
),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN.value,
api_key="sk-1234",
user_id="1234",
),
)
_new_models = await prisma_client.db.litellm_proxymodeltable.find_many()
print("_new_models: ", _new_models)
_new_model_in_db = None
for model in _new_models:
print("current model: ", model)
if model.model_info["id"] == _new_model_id:
print("FOUND MODEL: ", model)
_new_model_in_db = model
assert _new_model_in_db is not None
_original_model = _new_model_in_db
_original_litellm_params = _new_model_in_db.litellm_params
print("_original_litellm_params: ", _original_litellm_params)
print("now updating the tpm for model")
# run update to update "tpm"
await update_model(
model_params=updateDeployment(
litellm_params=updateLiteLLMParams(tpm=123456),
model_info=ModelInfo(
id=_new_model_id,
),
),
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN.value,
api_key="sk-1234",
user_id="1234",
),
)
_new_models = await prisma_client.db.litellm_proxymodeltable.find_many()
_new_model_in_db = None
for model in _new_models:
if model.model_info["id"] == _new_model_id:
print("\nFOUND MODEL: ", model)
_new_model_in_db = model
# assert all other litellm params are identical to _original_litellm_params
for key, value in _original_litellm_params.items():
if key == "tpm":
# assert that tpm actually got updated
assert _new_model_in_db.litellm_params[key] == 123456
else:
assert _new_model_in_db.litellm_params[key] == value
assert _original_model.model_id == _new_model_in_db.model_id
assert _original_model.model_name == _new_model_in_db.model_name
assert _original_model.model_info == _new_model_in_db.model_info
async def _create_new_team(prisma_client):
new_team_request = NewTeamRequest(
team_alias=f"team_{uuid.uuid4().hex}",
)
_new_team = await new_team(
data=new_team_request,
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN.value,
api_key="sk-1234",
user_id="1234",
),
http_request=Request(
scope={"type": "http", "method": "POST", "path": "/new_team"}
),
)
return LiteLLM_TeamTable(**_new_team)
@pytest.mark.asyncio
async def test_add_team_model_to_db(prisma_client):
"""
Test adding a team model and verifying the team_public_model_name is stored correctly
"""
setattr(litellm.proxy.proxy_server, "prisma_client", prisma_client)
setattr(litellm.proxy.proxy_server, "master_key", "sk-1234")
setattr(litellm.proxy.proxy_server, "store_model_in_db", True)
await litellm.proxy.proxy_server.prisma_client.connect()
from litellm.proxy.management_endpoints.model_management_endpoints import (
_add_team_model_to_db,
)
import uuid
new_team = await _create_new_team(prisma_client)
team_id = new_team.team_id
public_model_name = "my-gpt4-model"
model_id = f"local-test-{uuid.uuid4().hex}"
# Create test model deployment
model_params = Deployment(
model_name=public_model_name,
litellm_params=LiteLLM_Params(
model="gpt-4",
api_key="test_api_key",
),
model_info=ModelInfo(
id=model_id,
team_id=team_id,
),
)
# Add model to db
model_response = await _add_team_model_to_db(
model_params=model_params,
user_api_key_dict=UserAPIKeyAuth(
user_role=LitellmUserRoles.PROXY_ADMIN.value,
api_key="sk-1234",
user_id="1234",
team_id=team_id,
),
prisma_client=prisma_client,
)
# Verify model was created with correct attributes
assert model_response is not None
assert model_response.model_name.startswith(f"model_name_{team_id}")
# Verify team_public_model_name was stored in model_info
model_info = model_response.model_info
assert model_info["team_public_model_name"] == public_model_name
await asyncio.sleep(1)
# Verify team model alias was created
team = await prisma_client.db.litellm_teamtable.find_first(
where={
"team_id": team_id,
},
include={"litellm_model_table": True},
)
print("team=", team.model_dump_json())
assert team is not None
team_model = team.model_id
print("team model id=", team_model)
litellm_model_table = team.litellm_model_table
print("litellm_model_table=", litellm_model_table.model_dump_json())
model_aliases = litellm_model_table.model_aliases
print("model_aliases=", model_aliases)
assert public_model_name in model_aliases
assert model_aliases[public_model_name] == model_response.model_name