mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
* Fix Bedrock Anthropic topK bug * Remove extra import * Add unit test + make tests mocked * Fix camel case * Fix tests to remove exception handling Co-authored-by: vibhavbhat <vibhavb00@gmail.com>
728 lines
27 KiB
Python
728 lines
27 KiB
Python
"""
|
||
Translating between OpenAI's `/chat/completion` format and Amazon's `/converse` format
|
||
"""
|
||
|
||
import copy
|
||
import time
|
||
import types
|
||
from typing import Callable, List, Literal, Optional, Tuple, Union, cast, overload
|
||
|
||
import httpx
|
||
|
||
import litellm
|
||
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
||
from litellm.litellm_core_utils.litellm_logging import Logging
|
||
from litellm.litellm_core_utils.prompt_templates.factory import (
|
||
BedrockConverseMessagesProcessor,
|
||
_bedrock_converse_messages_pt,
|
||
_bedrock_tools_pt,
|
||
)
|
||
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
|
||
from litellm.types.llms.bedrock import *
|
||
from litellm.types.llms.openai import (
|
||
AllMessageValues,
|
||
ChatCompletionResponseMessage,
|
||
ChatCompletionSystemMessage,
|
||
ChatCompletionToolCallChunk,
|
||
ChatCompletionToolCallFunctionChunk,
|
||
ChatCompletionToolParam,
|
||
ChatCompletionToolParamFunctionChunk,
|
||
ChatCompletionUserMessage,
|
||
OpenAIMessageContentListBlock,
|
||
)
|
||
from litellm.types.utils import ModelResponse, Usage
|
||
from litellm.utils import add_dummy_tool, has_tool_call_blocks
|
||
|
||
from ..common_utils import (
|
||
AmazonBedrockGlobalConfig,
|
||
BedrockError,
|
||
get_bedrock_tool_name,
|
||
)
|
||
|
||
global_config = AmazonBedrockGlobalConfig()
|
||
all_global_regions = global_config.get_all_regions()
|
||
|
||
|
||
class AmazonConverseConfig(BaseConfig):
|
||
"""
|
||
Reference - https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_Converse.html
|
||
#2 - https://docs.aws.amazon.com/bedrock/latest/userguide/conversation-inference.html#conversation-inference-supported-models-features
|
||
"""
|
||
|
||
maxTokens: Optional[int]
|
||
stopSequences: Optional[List[str]]
|
||
temperature: Optional[int]
|
||
topP: Optional[int]
|
||
topK: Optional[int]
|
||
|
||
def __init__(
|
||
self,
|
||
maxTokens: Optional[int] = None,
|
||
stopSequences: Optional[List[str]] = None,
|
||
temperature: Optional[int] = None,
|
||
topP: Optional[int] = None,
|
||
topK: Optional[int] = None,
|
||
) -> None:
|
||
locals_ = locals()
|
||
for key, value in locals_.items():
|
||
if key != "self" and value is not None:
|
||
setattr(self.__class__, key, value)
|
||
|
||
@classmethod
|
||
def get_config(cls):
|
||
return {
|
||
k: v
|
||
for k, v in cls.__dict__.items()
|
||
if not k.startswith("__")
|
||
and not isinstance(
|
||
v,
|
||
(
|
||
types.FunctionType,
|
||
types.BuiltinFunctionType,
|
||
classmethod,
|
||
staticmethod,
|
||
),
|
||
)
|
||
and v is not None
|
||
}
|
||
|
||
def get_supported_openai_params(self, model: str) -> List[str]:
|
||
supported_params = [
|
||
"max_tokens",
|
||
"max_completion_tokens",
|
||
"stream",
|
||
"stream_options",
|
||
"stop",
|
||
"temperature",
|
||
"top_p",
|
||
"extra_headers",
|
||
"response_format",
|
||
]
|
||
|
||
## Filter out 'cross-region' from model name
|
||
base_model = self._get_base_model(model)
|
||
|
||
if (
|
||
base_model.startswith("anthropic")
|
||
or base_model.startswith("mistral")
|
||
or base_model.startswith("cohere")
|
||
or base_model.startswith("meta.llama3-1")
|
||
or base_model.startswith("meta.llama3-2")
|
||
or base_model.startswith("amazon.nova")
|
||
):
|
||
supported_params.append("tools")
|
||
|
||
if base_model.startswith("anthropic") or base_model.startswith("mistral"):
|
||
# only anthropic and mistral support tool choice config. otherwise (E.g. cohere) will fail the call - https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ToolChoice.html
|
||
supported_params.append("tool_choice")
|
||
|
||
return supported_params
|
||
|
||
def map_tool_choice_values(
|
||
self, model: str, tool_choice: Union[str, dict], drop_params: bool
|
||
) -> Optional[ToolChoiceValuesBlock]:
|
||
if tool_choice == "none":
|
||
if litellm.drop_params is True or drop_params is True:
|
||
return None
|
||
else:
|
||
raise litellm.utils.UnsupportedParamsError(
|
||
message="Bedrock doesn't support tool_choice={}. To drop it from the call, set `litellm.drop_params = True.".format(
|
||
tool_choice
|
||
),
|
||
status_code=400,
|
||
)
|
||
elif tool_choice == "required":
|
||
return ToolChoiceValuesBlock(any={})
|
||
elif tool_choice == "auto":
|
||
return ToolChoiceValuesBlock(auto={})
|
||
elif isinstance(tool_choice, dict):
|
||
# only supported for anthropic + mistral models - https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ToolChoice.html
|
||
specific_tool = SpecificToolChoiceBlock(
|
||
name=tool_choice.get("function", {}).get("name", "")
|
||
)
|
||
return ToolChoiceValuesBlock(tool=specific_tool)
|
||
else:
|
||
raise litellm.utils.UnsupportedParamsError(
|
||
message="Bedrock doesn't support tool_choice={}. Supported tool_choice values=['auto', 'required', json object]. To drop it from the call, set `litellm.drop_params = True.".format(
|
||
tool_choice
|
||
),
|
||
status_code=400,
|
||
)
|
||
|
||
def get_supported_image_types(self) -> List[str]:
|
||
return ["png", "jpeg", "gif", "webp"]
|
||
|
||
def get_supported_document_types(self) -> List[str]:
|
||
return ["pdf", "csv", "doc", "docx", "xls", "xlsx", "html", "txt", "md"]
|
||
|
||
def get_all_supported_content_types(self) -> List[str]:
|
||
return self.get_supported_image_types() + self.get_supported_document_types()
|
||
|
||
def _create_json_tool_call_for_response_format(
|
||
self,
|
||
json_schema: Optional[dict] = None,
|
||
schema_name: str = "json_tool_call",
|
||
) -> ChatCompletionToolParam:
|
||
"""
|
||
Handles creating a tool call for getting responses in JSON format.
|
||
|
||
Args:
|
||
json_schema (Optional[dict]): The JSON schema the response should be in
|
||
|
||
Returns:
|
||
AnthropicMessagesTool: The tool call to send to Anthropic API to get responses in JSON format
|
||
"""
|
||
|
||
if json_schema is None:
|
||
# Anthropic raises a 400 BadRequest error if properties is passed as None
|
||
# see usage with additionalProperties (Example 5) https://github.com/anthropics/anthropic-cookbook/blob/main/tool_use/extracting_structured_json.ipynb
|
||
_input_schema = {
|
||
"type": "object",
|
||
"additionalProperties": True,
|
||
"properties": {},
|
||
}
|
||
else:
|
||
_input_schema = json_schema
|
||
|
||
_tool = ChatCompletionToolParam(
|
||
type="function",
|
||
function=ChatCompletionToolParamFunctionChunk(
|
||
name=schema_name, parameters=_input_schema
|
||
),
|
||
)
|
||
return _tool
|
||
|
||
def map_openai_params(
|
||
self,
|
||
non_default_params: dict,
|
||
optional_params: dict,
|
||
model: str,
|
||
drop_params: bool,
|
||
messages: Optional[List[AllMessageValues]] = None,
|
||
) -> dict:
|
||
for param, value in non_default_params.items():
|
||
if param == "response_format":
|
||
json_schema: Optional[dict] = None
|
||
schema_name: str = ""
|
||
if "response_schema" in value:
|
||
json_schema = value["response_schema"]
|
||
schema_name = "json_tool_call"
|
||
elif "json_schema" in value:
|
||
json_schema = value["json_schema"]["schema"]
|
||
schema_name = value["json_schema"]["name"]
|
||
"""
|
||
Follow similar approach to anthropic - translate to a single tool call.
|
||
|
||
When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
|
||
- You usually want to provide a single tool
|
||
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
|
||
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
|
||
"""
|
||
_tool_choice = {"name": schema_name, "type": "tool"}
|
||
_tool = self._create_json_tool_call_for_response_format(
|
||
json_schema=json_schema,
|
||
schema_name=schema_name if schema_name != "" else "json_tool_call",
|
||
)
|
||
optional_params["tools"] = [_tool]
|
||
optional_params["tool_choice"] = ToolChoiceValuesBlock(
|
||
tool=SpecificToolChoiceBlock(
|
||
name=schema_name if schema_name != "" else "json_tool_call"
|
||
)
|
||
)
|
||
optional_params["json_mode"] = True
|
||
if non_default_params.get("stream", False) is True:
|
||
optional_params["fake_stream"] = True
|
||
if param == "max_tokens" or param == "max_completion_tokens":
|
||
optional_params["maxTokens"] = value
|
||
if param == "stream":
|
||
optional_params["stream"] = value
|
||
if param == "stop":
|
||
if isinstance(value, str):
|
||
if len(value) == 0: # converse raises error for empty strings
|
||
continue
|
||
value = [value]
|
||
optional_params["stopSequences"] = value
|
||
if param == "temperature":
|
||
optional_params["temperature"] = value
|
||
if param == "top_p":
|
||
optional_params["topP"] = value
|
||
if param == "tools":
|
||
optional_params["tools"] = value
|
||
if param == "tool_choice":
|
||
_tool_choice_value = self.map_tool_choice_values(
|
||
model=model, tool_choice=value, drop_params=drop_params # type: ignore
|
||
)
|
||
if _tool_choice_value is not None:
|
||
optional_params["tool_choice"] = _tool_choice_value
|
||
|
||
return optional_params
|
||
|
||
@overload
|
||
def _get_cache_point_block(
|
||
self,
|
||
message_block: Union[
|
||
OpenAIMessageContentListBlock,
|
||
ChatCompletionUserMessage,
|
||
ChatCompletionSystemMessage,
|
||
],
|
||
block_type: Literal["system"],
|
||
) -> Optional[SystemContentBlock]:
|
||
pass
|
||
|
||
@overload
|
||
def _get_cache_point_block(
|
||
self,
|
||
message_block: Union[
|
||
OpenAIMessageContentListBlock,
|
||
ChatCompletionUserMessage,
|
||
ChatCompletionSystemMessage,
|
||
],
|
||
block_type: Literal["content_block"],
|
||
) -> Optional[ContentBlock]:
|
||
pass
|
||
|
||
def _get_cache_point_block(
|
||
self,
|
||
message_block: Union[
|
||
OpenAIMessageContentListBlock,
|
||
ChatCompletionUserMessage,
|
||
ChatCompletionSystemMessage,
|
||
],
|
||
block_type: Literal["system", "content_block"],
|
||
) -> Optional[Union[SystemContentBlock, ContentBlock]]:
|
||
if message_block.get("cache_control", None) is None:
|
||
return None
|
||
if block_type == "system":
|
||
return SystemContentBlock(cachePoint=CachePointBlock(type="default"))
|
||
else:
|
||
return ContentBlock(cachePoint=CachePointBlock(type="default"))
|
||
|
||
def _transform_system_message(
|
||
self, messages: List[AllMessageValues]
|
||
) -> Tuple[List[AllMessageValues], List[SystemContentBlock]]:
|
||
system_prompt_indices = []
|
||
system_content_blocks: List[SystemContentBlock] = []
|
||
for idx, message in enumerate(messages):
|
||
if message["role"] == "system":
|
||
_system_content_block: Optional[SystemContentBlock] = None
|
||
_cache_point_block: Optional[SystemContentBlock] = None
|
||
if isinstance(message["content"], str) and len(message["content"]) > 0:
|
||
_system_content_block = SystemContentBlock(text=message["content"])
|
||
_cache_point_block = self._get_cache_point_block(
|
||
message, block_type="system"
|
||
)
|
||
elif isinstance(message["content"], list):
|
||
for m in message["content"]:
|
||
if m.get("type", "") == "text" and len(m["text"]) > 0:
|
||
_system_content_block = SystemContentBlock(text=m["text"])
|
||
_cache_point_block = self._get_cache_point_block(
|
||
m, block_type="system"
|
||
)
|
||
if _system_content_block is not None:
|
||
system_content_blocks.append(_system_content_block)
|
||
if _cache_point_block is not None:
|
||
system_content_blocks.append(_cache_point_block)
|
||
system_prompt_indices.append(idx)
|
||
if len(system_prompt_indices) > 0:
|
||
for idx in reversed(system_prompt_indices):
|
||
messages.pop(idx)
|
||
return messages, system_content_blocks
|
||
|
||
def _transform_inference_params(self, inference_params: dict) -> InferenceConfig:
|
||
if "top_k" in inference_params:
|
||
inference_params["topK"] = inference_params.pop("top_k")
|
||
return InferenceConfig(**inference_params)
|
||
|
||
def _handle_top_k_value(self, model: str, inference_params: dict) -> dict:
|
||
base_model = self._get_base_model(model)
|
||
|
||
val_top_k = None
|
||
if "topK" in inference_params:
|
||
val_top_k = inference_params.pop("topK")
|
||
elif "top_k" in inference_params:
|
||
val_top_k = inference_params.pop("top_k")
|
||
|
||
if val_top_k:
|
||
if (base_model.startswith("anthropic")):
|
||
return {"top_k": val_top_k}
|
||
if base_model.startswith("amazon.nova"):
|
||
return {'inferenceConfig': {"topK": val_top_k}}
|
||
|
||
return {}
|
||
|
||
def _transform_request_helper(
|
||
self,
|
||
model: str,
|
||
system_content_blocks: List[SystemContentBlock],
|
||
optional_params: dict,
|
||
messages: Optional[List[AllMessageValues]] = None,
|
||
) -> CommonRequestObject:
|
||
|
||
## VALIDATE REQUEST
|
||
"""
|
||
Bedrock doesn't support tool calling without `tools=` param specified.
|
||
"""
|
||
if (
|
||
"tools" not in optional_params
|
||
and messages is not None
|
||
and has_tool_call_blocks(messages)
|
||
):
|
||
if litellm.modify_params:
|
||
optional_params["tools"] = add_dummy_tool(
|
||
custom_llm_provider="bedrock_converse"
|
||
)
|
||
else:
|
||
raise litellm.UnsupportedParamsError(
|
||
message="Bedrock doesn't support tool calling without `tools=` param specified. Pass `tools=` param OR set `litellm.modify_params = True` // `litellm_settings::modify_params: True` to add dummy tool to the request.",
|
||
model="",
|
||
llm_provider="bedrock",
|
||
)
|
||
|
||
inference_params = copy.deepcopy(optional_params)
|
||
supported_converse_params = list(
|
||
AmazonConverseConfig.__annotations__.keys()
|
||
) + ["top_k"]
|
||
supported_tool_call_params = ["tools", "tool_choice"]
|
||
supported_guardrail_params = ["guardrailConfig"]
|
||
total_supported_params = supported_converse_params + supported_tool_call_params + supported_guardrail_params
|
||
inference_params.pop("json_mode", None) # used for handling json_schema
|
||
|
||
# keep supported params in 'inference_params', and set all model-specific params in 'additional_request_params'
|
||
additional_request_params = {k: v for k, v in inference_params.items() if k not in total_supported_params}
|
||
inference_params = {k: v for k, v in inference_params.items() if k in total_supported_params}
|
||
|
||
# Only set the topK value in for models that support it
|
||
additional_request_params.update(self._handle_top_k_value(model, inference_params))
|
||
|
||
bedrock_tools: List[ToolBlock] = _bedrock_tools_pt(
|
||
inference_params.pop("tools", [])
|
||
)
|
||
bedrock_tool_config: Optional[ToolConfigBlock] = None
|
||
if len(bedrock_tools) > 0:
|
||
tool_choice_values: ToolChoiceValuesBlock = inference_params.pop(
|
||
"tool_choice", None
|
||
)
|
||
bedrock_tool_config = ToolConfigBlock(
|
||
tools=bedrock_tools,
|
||
)
|
||
if tool_choice_values is not None:
|
||
bedrock_tool_config["toolChoice"] = tool_choice_values
|
||
|
||
data: CommonRequestObject = {
|
||
"additionalModelRequestFields": additional_request_params,
|
||
"system": system_content_blocks,
|
||
"inferenceConfig": self._transform_inference_params(
|
||
inference_params=inference_params
|
||
),
|
||
}
|
||
|
||
# Guardrail Config
|
||
guardrail_config: Optional[GuardrailConfigBlock] = None
|
||
request_guardrails_config = inference_params.pop("guardrailConfig", None)
|
||
if request_guardrails_config is not None:
|
||
guardrail_config = GuardrailConfigBlock(**request_guardrails_config)
|
||
data["guardrailConfig"] = guardrail_config
|
||
|
||
# Tool Config
|
||
if bedrock_tool_config is not None:
|
||
data["toolConfig"] = bedrock_tool_config
|
||
|
||
return data
|
||
|
||
async def _async_transform_request(
|
||
self,
|
||
model: str,
|
||
messages: List[AllMessageValues],
|
||
optional_params: dict,
|
||
litellm_params: dict,
|
||
) -> RequestObject:
|
||
messages, system_content_blocks = self._transform_system_message(messages)
|
||
## TRANSFORMATION ##
|
||
|
||
_data: CommonRequestObject = self._transform_request_helper(
|
||
model=model,
|
||
system_content_blocks=system_content_blocks,
|
||
optional_params=optional_params,
|
||
messages=messages,
|
||
)
|
||
|
||
bedrock_messages = (
|
||
await BedrockConverseMessagesProcessor._bedrock_converse_messages_pt_async(
|
||
messages=messages,
|
||
model=model,
|
||
llm_provider="bedrock_converse",
|
||
user_continue_message=litellm_params.pop("user_continue_message", None),
|
||
)
|
||
)
|
||
|
||
data: RequestObject = {"messages": bedrock_messages, **_data}
|
||
|
||
return data
|
||
|
||
def transform_request(
|
||
self,
|
||
model: str,
|
||
messages: List[AllMessageValues],
|
||
optional_params: dict,
|
||
litellm_params: dict,
|
||
headers: dict,
|
||
) -> dict:
|
||
return cast(
|
||
dict,
|
||
self._transform_request(
|
||
model=model,
|
||
messages=messages,
|
||
optional_params=optional_params,
|
||
litellm_params=litellm_params,
|
||
),
|
||
)
|
||
|
||
def _transform_request(
|
||
self,
|
||
model: str,
|
||
messages: List[AllMessageValues],
|
||
optional_params: dict,
|
||
litellm_params: dict,
|
||
) -> RequestObject:
|
||
messages, system_content_blocks = self._transform_system_message(messages)
|
||
|
||
_data: CommonRequestObject = self._transform_request_helper(
|
||
model=model,
|
||
system_content_blocks=system_content_blocks,
|
||
optional_params=optional_params,
|
||
messages=messages,
|
||
)
|
||
|
||
## TRANSFORMATION ##
|
||
bedrock_messages: List[MessageBlock] = _bedrock_converse_messages_pt(
|
||
messages=messages,
|
||
model=model,
|
||
llm_provider="bedrock_converse",
|
||
user_continue_message=litellm_params.pop("user_continue_message", None),
|
||
)
|
||
|
||
data: RequestObject = {"messages": bedrock_messages, **_data}
|
||
|
||
return data
|
||
|
||
def transform_response(
|
||
self,
|
||
model: str,
|
||
raw_response: httpx.Response,
|
||
model_response: ModelResponse,
|
||
logging_obj: Logging,
|
||
request_data: dict,
|
||
messages: List[AllMessageValues],
|
||
optional_params: dict,
|
||
litellm_params: dict,
|
||
encoding: Any,
|
||
api_key: Optional[str] = None,
|
||
json_mode: Optional[bool] = None,
|
||
) -> ModelResponse:
|
||
return self._transform_response(
|
||
model=model,
|
||
response=raw_response,
|
||
model_response=model_response,
|
||
stream=optional_params.get("stream", False),
|
||
logging_obj=logging_obj,
|
||
optional_params=optional_params,
|
||
api_key=api_key,
|
||
data=request_data,
|
||
messages=messages,
|
||
print_verbose=None,
|
||
encoding=encoding,
|
||
)
|
||
|
||
def _transform_response(
|
||
self,
|
||
model: str,
|
||
response: httpx.Response,
|
||
model_response: ModelResponse,
|
||
stream: bool,
|
||
logging_obj: Optional[Logging],
|
||
optional_params: dict,
|
||
api_key: Optional[str],
|
||
data: Union[dict, str],
|
||
messages: List,
|
||
print_verbose: Optional[Callable],
|
||
encoding,
|
||
) -> ModelResponse:
|
||
## LOGGING
|
||
if logging_obj is not None:
|
||
logging_obj.post_call(
|
||
input=messages,
|
||
api_key=api_key,
|
||
original_response=response.text,
|
||
additional_args={"complete_input_dict": data},
|
||
)
|
||
|
||
json_mode: Optional[bool] = optional_params.pop("json_mode", None)
|
||
## RESPONSE OBJECT
|
||
try:
|
||
completion_response = ConverseResponseBlock(**response.json()) # type: ignore
|
||
except Exception as e:
|
||
raise BedrockError(
|
||
message="Received={}, Error converting to valid response block={}. File an issue if litellm error - https://github.com/BerriAI/litellm/issues".format(
|
||
response.text, str(e)
|
||
),
|
||
status_code=422,
|
||
)
|
||
|
||
"""
|
||
Bedrock Response Object has optional message block
|
||
|
||
completion_response["output"].get("message", None)
|
||
|
||
A message block looks like this (Example 1):
|
||
"output": {
|
||
"message": {
|
||
"role": "assistant",
|
||
"content": [
|
||
{
|
||
"text": "Is there anything else you'd like to talk about? Perhaps I can help with some economic questions or provide some information about economic concepts?"
|
||
}
|
||
]
|
||
}
|
||
},
|
||
(Example 2):
|
||
"output": {
|
||
"message": {
|
||
"role": "assistant",
|
||
"content": [
|
||
{
|
||
"toolUse": {
|
||
"toolUseId": "tooluse_hbTgdi0CSLq_hM4P8csZJA",
|
||
"name": "top_song",
|
||
"input": {
|
||
"sign": "WZPZ"
|
||
}
|
||
}
|
||
}
|
||
]
|
||
}
|
||
}
|
||
|
||
"""
|
||
message: Optional[MessageBlock] = completion_response["output"]["message"]
|
||
chat_completion_message: ChatCompletionResponseMessage = {"role": "assistant"}
|
||
content_str = ""
|
||
tools: List[ChatCompletionToolCallChunk] = []
|
||
if message is not None:
|
||
for idx, content in enumerate(message["content"]):
|
||
"""
|
||
- Content is either a tool response or text
|
||
"""
|
||
if "text" in content:
|
||
content_str += content["text"]
|
||
if "toolUse" in content:
|
||
|
||
## check tool name was formatted by litellm
|
||
_response_tool_name = content["toolUse"]["name"]
|
||
response_tool_name = get_bedrock_tool_name(
|
||
response_tool_name=_response_tool_name
|
||
)
|
||
_function_chunk = ChatCompletionToolCallFunctionChunk(
|
||
name=response_tool_name,
|
||
arguments=json.dumps(content["toolUse"]["input"]),
|
||
)
|
||
|
||
_tool_response_chunk = ChatCompletionToolCallChunk(
|
||
id=content["toolUse"]["toolUseId"],
|
||
type="function",
|
||
function=_function_chunk,
|
||
index=idx,
|
||
)
|
||
tools.append(_tool_response_chunk)
|
||
chat_completion_message["content"] = content_str
|
||
|
||
if json_mode is True and tools is not None and len(tools) == 1:
|
||
# to support 'json_schema' logic on bedrock models
|
||
json_mode_content_str: Optional[str] = tools[0]["function"].get("arguments")
|
||
if json_mode_content_str is not None:
|
||
chat_completion_message["content"] = json_mode_content_str
|
||
else:
|
||
chat_completion_message["tool_calls"] = tools
|
||
|
||
## CALCULATING USAGE - bedrock returns usage in the headers
|
||
input_tokens = completion_response["usage"]["inputTokens"]
|
||
output_tokens = completion_response["usage"]["outputTokens"]
|
||
total_tokens = completion_response["usage"]["totalTokens"]
|
||
|
||
model_response.choices = [
|
||
litellm.Choices(
|
||
finish_reason=map_finish_reason(completion_response["stopReason"]),
|
||
index=0,
|
||
message=litellm.Message(**chat_completion_message),
|
||
)
|
||
]
|
||
model_response.created = int(time.time())
|
||
model_response.model = model
|
||
usage = Usage(
|
||
prompt_tokens=input_tokens,
|
||
completion_tokens=output_tokens,
|
||
total_tokens=total_tokens,
|
||
)
|
||
setattr(model_response, "usage", usage)
|
||
|
||
# Add "trace" from Bedrock guardrails - if user has opted in to returning it
|
||
if "trace" in completion_response:
|
||
setattr(model_response, "trace", completion_response["trace"])
|
||
|
||
return model_response
|
||
|
||
def _supported_cross_region_inference_region(self) -> List[str]:
|
||
"""
|
||
Abbreviations of regions AWS Bedrock supports for cross region inference
|
||
"""
|
||
return ["us", "eu", "apac"]
|
||
|
||
def _get_base_model(self, model: str) -> str:
|
||
"""
|
||
Get the base model from the given model name.
|
||
|
||
Handle model names like - "us.meta.llama3-2-11b-instruct-v1:0" -> "meta.llama3-2-11b-instruct-v1"
|
||
AND "meta.llama3-2-11b-instruct-v1:0" -> "meta.llama3-2-11b-instruct-v1"
|
||
"""
|
||
|
||
if model.startswith("bedrock/"):
|
||
model = model.split("/", 1)[1]
|
||
|
||
if model.startswith("converse/"):
|
||
model = model.split("/", 1)[1]
|
||
|
||
potential_region = model.split(".", 1)[0]
|
||
|
||
alt_potential_region = model.split("/", 1)[
|
||
0
|
||
] # in model cost map we store regional information like `/us-west-2/bedrock-model`
|
||
|
||
if potential_region in self._supported_cross_region_inference_region():
|
||
return model.split(".", 1)[1]
|
||
elif (
|
||
alt_potential_region in all_global_regions and len(model.split("/", 1)) > 1
|
||
):
|
||
return model.split("/", 1)[1]
|
||
|
||
return model
|
||
|
||
def get_error_class(
|
||
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
||
) -> BaseLLMException:
|
||
return BedrockError(
|
||
message=error_message,
|
||
status_code=status_code,
|
||
headers=headers,
|
||
)
|
||
|
||
def validate_environment(
|
||
self,
|
||
headers: dict,
|
||
model: str,
|
||
messages: List[AllMessageValues],
|
||
optional_params: dict,
|
||
api_key: Optional[str] = None,
|
||
api_base: Optional[str] = None,
|
||
) -> dict:
|
||
if api_key:
|
||
headers["Authorization"] = f"Bearer {api_key}"
|
||
return headers
|