mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
150 lines
6.7 KiB
Python
150 lines
6.7 KiB
Python
import click
|
|
import subprocess
|
|
import os, appdirs
|
|
from dotenv import load_dotenv
|
|
|
|
load_dotenv()
|
|
from importlib import resources
|
|
import shutil
|
|
|
|
config_filename = ".env.litellm"
|
|
|
|
# Using appdirs to determine user-specific config path
|
|
config_dir = appdirs.user_config_dir("litellm")
|
|
user_config_path = os.path.join(config_dir, config_filename)
|
|
|
|
def run_ollama_serve():
|
|
command = ['ollama', 'serve']
|
|
|
|
with open(os.devnull, 'w') as devnull:
|
|
process = subprocess.Popen(command, stdout=devnull, stderr=devnull)
|
|
|
|
def load_config():
|
|
try:
|
|
if not os.path.exists(user_config_path):
|
|
# If user's config doesn't exist, copy the default config from the package
|
|
here = os.path.abspath(os.path.dirname(__file__))
|
|
parent_dir = os.path.dirname(here)
|
|
default_config_path = os.path.join(parent_dir, '.env.template')
|
|
# Ensure the user-specific directory exists
|
|
os.makedirs(config_dir, exist_ok=True)
|
|
# Copying the file using shutil.copy
|
|
shutil.copy(default_config_path, user_config_path)
|
|
|
|
# As the .env file is typically much simpler in structure, we use load_dotenv here directly
|
|
load_dotenv(dotenv_path=user_config_path)
|
|
except:
|
|
pass
|
|
|
|
def open_config():
|
|
# Create the .env file if it doesn't exist
|
|
if not os.path.exists(user_config_path):
|
|
# If user's env doesn't exist, copy the default env from the package
|
|
here = os.path.abspath(os.path.dirname(__file__))
|
|
parent_dir = os.path.dirname(here)
|
|
default_env_path = os.path.join(parent_dir, '.env.template')
|
|
# Ensure the user-specific directory exists
|
|
os.makedirs(config_dir, exist_ok=True)
|
|
# Copying the file using shutil.copy
|
|
try:
|
|
shutil.copy(default_env_path, user_config_path)
|
|
except Exception as e:
|
|
print(f"Failed to copy .env.template: {e}")
|
|
|
|
# Open the .env file in the default editor
|
|
if os.name == 'nt': # For Windows
|
|
os.startfile(user_config_path)
|
|
elif os.name == 'posix': # For MacOS, Linux, and anything using Bash
|
|
subprocess.call(('open', '-t', user_config_path))
|
|
|
|
@click.command()
|
|
@click.option('--host', default='0.0.0.0', help='Host for the server to listen on.')
|
|
@click.option('--port', default=8000, help='Port to bind the server to.')
|
|
@click.option('--api_base', default=None, help='API base URL.')
|
|
@click.option('--model', default=None, help='The model name to pass to litellm expects')
|
|
@click.option('--deploy', is_flag=True, type=bool, help='Get a deployed proxy endpoint - api.litellm.ai')
|
|
@click.option('--debug', is_flag=True, help='To debug the input')
|
|
@click.option('--temperature', default=None, type=float, help='Set temperature for the model')
|
|
@click.option('--max_tokens', default=None, type=int, help='Set max tokens for the model')
|
|
@click.option('--drop_params', is_flag=True, help='Drop any unmapped params')
|
|
@click.option('--add_function_to_prompt', is_flag=True, help='If function passed but unsupported, pass it as prompt')
|
|
@click.option('--max_tokens', default=None, type=int, help='Set max tokens for the model')
|
|
@click.option('--max_budget', default=None, type=float, help='Set max budget for API calls - works for hosted models like OpenAI, TogetherAI, Anthropic, etc.`')
|
|
@click.option('--telemetry', default=True, type=bool, help='Helps us know if people are using this feature. Turn this off by doing `--telemetry False`')
|
|
@click.option('--config', is_flag=True, help='Create and open .env file from .env.template')
|
|
@click.option('--test', flag_value=True, help='proxy chat completions url to make a test request to')
|
|
@click.option('--local', is_flag=True, default=False, help='for local debugging')
|
|
@click.option('--cost', is_flag=True, default=False, help='for viewing cost logs')
|
|
def run_server(host, port, api_base, model, deploy, debug, temperature, max_tokens, drop_params, add_function_to_prompt, max_budget, telemetry, config, test, local, cost):
|
|
if config:
|
|
open_config()
|
|
|
|
if local:
|
|
from proxy_server import app, initialize, deploy_proxy, print_cost_logs
|
|
debug = True
|
|
else:
|
|
from .proxy_server import app, initialize, deploy_proxy, print_cost_logs
|
|
|
|
if deploy == True:
|
|
print(f"\033[32mLiteLLM: Deploying your proxy to api.litellm.ai\033[0m\n")
|
|
print(f"\033[32mLiteLLM: Deploying proxy for model: {model}\033[0m\n")
|
|
url = deploy_proxy(model, api_base, debug, temperature, max_tokens, telemetry, deploy)
|
|
print(f"\033[32mLiteLLM: Deploy Successfull\033[0m\n")
|
|
print(f"\033[32mLiteLLM: Your deployed url: {url}\033[0m\n")
|
|
|
|
print(f"\033[32mLiteLLM: Test your URL using the following: \"litellm --test {url}\"\033[0m")
|
|
return
|
|
if model and "ollama" in model:
|
|
run_ollama_serve()
|
|
if cost == True:
|
|
print_cost_logs()
|
|
return
|
|
if test != False:
|
|
click.echo('LiteLLM: Making a test ChatCompletions request to your proxy')
|
|
import openai
|
|
if test == True: # flag value set
|
|
api_base = f"http://{host}:{port}"
|
|
else:
|
|
api_base = test
|
|
openai.api_base = api_base
|
|
openai.api_key = "temp-key"
|
|
print(openai.api_base)
|
|
|
|
response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "this is a test request, acknowledge that you got it"
|
|
}
|
|
])
|
|
click.echo(f'LiteLLM: response from proxy {response}')
|
|
|
|
click.echo(f'LiteLLM: response from proxy with streaming {response}')
|
|
response = openai.ChatCompletion.create(model="gpt-3.5-turbo", messages = [
|
|
{
|
|
"role": "user",
|
|
"content": "this is a test request, acknowledge that you got it"
|
|
}
|
|
],
|
|
stream=True,
|
|
)
|
|
for chunk in response:
|
|
click.echo(f'LiteLLM: streaming response from proxy {chunk}')
|
|
return
|
|
else:
|
|
load_config()
|
|
initialize(model, api_base, debug, temperature, max_tokens, max_budget, telemetry, drop_params, add_function_to_prompt)
|
|
|
|
|
|
try:
|
|
import uvicorn
|
|
except:
|
|
raise ImportError("Uvicorn needs to be imported. Run - `pip install uvicorn`")
|
|
print(f"\033[32mLiteLLM: Deployed Proxy Locally\033[0m\n")
|
|
print(f"\033[32mLiteLLM: Test your local endpoint with: \"litellm --test\" [In a new terminal tab]\033[0m\n")
|
|
print(f"\033[32mLiteLLM: Deploy your proxy using the following: \"litellm --model claude-instant-1 --deploy\" Get an https://api.litellm.ai/chat/completions endpoint \033[0m\n")
|
|
|
|
uvicorn.run(app, host=host, port=port)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_server()
|