mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* Feature - infinity support for #8764 (#10009) * Added support for infinity embeddings * Added test cases * Fixed tests and api base * Updated docs and tests * Removed unused import * Updated signature * Added support for infinity embeddings * Added test cases * Fixed tests and api base * Updated docs and tests * Removed unused import * Updated signature * Updated validate params --------- Co-authored-by: Ishaan Jaff <ishaanjaffer0324@gmail.com> * fix InfinityEmbeddingConfig --------- Co-authored-by: Prathamesh Saraf <pratamesh1867@gmail.com>
374 lines
12 KiB
Python
374 lines
12 KiB
Python
import json
|
|
import os
|
|
import sys
|
|
from datetime import datetime
|
|
from unittest.mock import AsyncMock
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system-path
|
|
|
|
|
|
import litellm
|
|
|
|
import json
|
|
import os
|
|
import sys
|
|
from datetime import datetime
|
|
from unittest.mock import patch, MagicMock, AsyncMock
|
|
|
|
import pytest
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system-path
|
|
from test_rerank import assert_response_shape
|
|
import litellm
|
|
|
|
from base_embedding_unit_tests import BaseLLMEmbeddingTest
|
|
from litellm.llms.custom_httpx.http_handler import HTTPHandler, AsyncHTTPHandler
|
|
from litellm.types.utils import EmbeddingResponse, Usage
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
async def test_infinity_rerank():
|
|
mock_response = AsyncMock()
|
|
|
|
def return_val():
|
|
return {
|
|
"id": "cmpl-mockid",
|
|
"results": [{"index": 0, "relevance_score": 0.95}],
|
|
"usage": {"prompt_tokens": 100, "total_tokens": 150},
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.headers = {"key": "value"}
|
|
mock_response.status_code = 200
|
|
|
|
expected_payload = {
|
|
"model": "rerank-model",
|
|
"query": "hello",
|
|
"top_n": 3,
|
|
"documents": ["hello", "world"],
|
|
}
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
response = await litellm.arerank(
|
|
model="infinity/rerank-model",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
top_n=3,
|
|
api_base="https://api.infinity.ai",
|
|
)
|
|
|
|
print("async re rank response: ", response)
|
|
|
|
# Assert
|
|
mock_post.assert_called_once()
|
|
print("call args", mock_post.call_args)
|
|
args_to_api = mock_post.call_args.kwargs["data"]
|
|
_url = mock_post.call_args.kwargs["url"]
|
|
print("Arguments passed to API=", args_to_api)
|
|
print("url = ", _url)
|
|
assert _url == "https://api.infinity.ai/rerank"
|
|
|
|
request_data = json.loads(args_to_api)
|
|
assert request_data["query"] == expected_payload["query"]
|
|
assert request_data["documents"] == expected_payload["documents"]
|
|
assert request_data["top_n"] == expected_payload["top_n"]
|
|
assert request_data["model"] == expected_payload["model"]
|
|
|
|
assert response.id is not None
|
|
assert response.results is not None
|
|
assert response.meta["tokens"]["input_tokens"] == 100
|
|
assert (
|
|
response.meta["tokens"]["output_tokens"] == 50
|
|
) # total_tokens - prompt_tokens
|
|
|
|
assert_response_shape(response, custom_llm_provider="infinity")
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
async def test_infinity_rerank_with_return_documents():
|
|
mock_response = AsyncMock()
|
|
|
|
mock_response = AsyncMock()
|
|
|
|
def return_val():
|
|
return {
|
|
"id": "cmpl-mockid",
|
|
"results": [{"index": 0, "relevance_score": 0.95, "document": "hello"}],
|
|
"usage": {"prompt_tokens": 100, "total_tokens": 150},
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.headers = {"key": "value"}
|
|
mock_response.status_code = 200
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
response = await litellm.arerank(
|
|
model="infinity/rerank-model",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
top_n=3,
|
|
return_documents=True,
|
|
api_base="https://api.infinity.ai",
|
|
)
|
|
assert response.results[0]["document"] == {"text": "hello"}
|
|
assert_response_shape(response, custom_llm_provider="infinity")
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
async def test_infinity_rerank_with_env(monkeypatch):
|
|
# Set up mock response
|
|
mock_response = AsyncMock()
|
|
|
|
def return_val():
|
|
return {
|
|
"id": "cmpl-mockid",
|
|
"results": [{"index": 0, "relevance_score": 0.95}],
|
|
"usage": {"prompt_tokens": 100, "total_tokens": 150},
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.headers = {"key": "value"}
|
|
mock_response.status_code = 200
|
|
|
|
# Set environment variable
|
|
monkeypatch.setenv("INFINITY_API_BASE", "https://env.infinity.ai")
|
|
|
|
expected_payload = {
|
|
"model": "rerank-model",
|
|
"query": "hello",
|
|
"top_n": 3,
|
|
"documents": ["hello", "world"],
|
|
}
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
response = await litellm.arerank(
|
|
model="infinity/rerank-model",
|
|
query="hello",
|
|
documents=["hello", "world"],
|
|
top_n=3,
|
|
)
|
|
|
|
print("async re rank response: ", response)
|
|
|
|
# Assert
|
|
mock_post.assert_called_once()
|
|
print("call args", mock_post.call_args)
|
|
args_to_api = mock_post.call_args.kwargs["data"]
|
|
_url = mock_post.call_args.kwargs["url"]
|
|
print("Arguments passed to API=", args_to_api)
|
|
print("url = ", _url)
|
|
assert _url == "https://env.infinity.ai/rerank"
|
|
|
|
request_data = json.loads(args_to_api)
|
|
assert request_data["query"] == expected_payload["query"]
|
|
assert request_data["documents"] == expected_payload["documents"]
|
|
assert request_data["top_n"] == expected_payload["top_n"]
|
|
assert request_data["model"] == expected_payload["model"]
|
|
|
|
assert response.id is not None
|
|
assert response.results is not None
|
|
assert response.meta["tokens"]["input_tokens"] == 100
|
|
assert (
|
|
response.meta["tokens"]["output_tokens"] == 50
|
|
) # total_tokens - prompt_tokens
|
|
|
|
assert_response_shape(response, custom_llm_provider="infinity")
|
|
|
|
#### Embedding Tests
|
|
@pytest.mark.asyncio()
|
|
async def test_infinity_embedding():
|
|
mock_response = AsyncMock()
|
|
|
|
def return_val():
|
|
return {
|
|
"data": [{"embedding": [0.1, 0.2, 0.3], "index": 0}],
|
|
"usage": {"prompt_tokens": 100, "total_tokens": 150},
|
|
"model": "custom-model/embedding-v1",
|
|
"object": "list"
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.headers = {"key": "value"}
|
|
mock_response.status_code = 200
|
|
|
|
expected_payload = {
|
|
"model": "custom-model/embedding-v1",
|
|
"input": ["hello world"],
|
|
"encoding_format": "float",
|
|
"output_dimension": 512
|
|
}
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
response = await litellm.aembedding(
|
|
model="infinity/custom-model/embedding-v1",
|
|
input=["hello world"],
|
|
dimensions=512,
|
|
encoding_format="float",
|
|
api_base="https://api.infinity.ai/embeddings",
|
|
|
|
)
|
|
|
|
# Assert
|
|
mock_post.assert_called_once()
|
|
print("call args", mock_post.call_args)
|
|
args_to_api = mock_post.call_args.kwargs["data"]
|
|
_url = mock_post.call_args.kwargs["url"]
|
|
assert _url == "https://api.infinity.ai/embeddings"
|
|
|
|
request_data = json.loads(args_to_api)
|
|
assert request_data["input"] == expected_payload["input"]
|
|
assert request_data["model"] == expected_payload["model"]
|
|
assert request_data["output_dimension"] == expected_payload["output_dimension"]
|
|
assert request_data["encoding_format"] == expected_payload["encoding_format"]
|
|
|
|
assert response.data is not None
|
|
assert response.usage.prompt_tokens == 100
|
|
assert response.usage.total_tokens == 150
|
|
assert response.model == "custom-model/embedding-v1"
|
|
assert response.object == "list"
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
async def test_infinity_embedding_with_env(monkeypatch):
|
|
# Set up mock response
|
|
mock_response = AsyncMock()
|
|
|
|
def return_val():
|
|
return {
|
|
"data": [{"embedding": [0.1, 0.2, 0.3], "index": 0}],
|
|
"usage": {"prompt_tokens": 100, "total_tokens": 150},
|
|
"model": "custom-model/embedding-v1",
|
|
"object": "list"
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.headers = {"key": "value"}
|
|
mock_response.status_code = 200
|
|
|
|
expected_payload = {
|
|
"model": "custom-model/embedding-v1",
|
|
"input": ["hello world"],
|
|
"encoding_format": "float",
|
|
"output_dimension": 512
|
|
}
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
response = await litellm.aembedding(
|
|
model="infinity/custom-model/embedding-v1",
|
|
input=["hello world"],
|
|
dimensions=512,
|
|
encoding_format="float",
|
|
api_base="https://api.infinity.ai/embeddings",
|
|
)
|
|
|
|
# Assert
|
|
mock_post.assert_called_once()
|
|
print("call args", mock_post.call_args)
|
|
args_to_api = mock_post.call_args.kwargs["data"]
|
|
_url = mock_post.call_args.kwargs["url"]
|
|
assert _url == "https://api.infinity.ai/embeddings"
|
|
|
|
request_data = json.loads(args_to_api)
|
|
assert request_data["input"] == expected_payload["input"]
|
|
assert request_data["model"] == expected_payload["model"]
|
|
assert request_data["output_dimension"] == expected_payload["output_dimension"]
|
|
assert request_data["encoding_format"] == expected_payload["encoding_format"]
|
|
|
|
assert response.data is not None
|
|
assert response.usage.prompt_tokens == 100
|
|
assert response.usage.total_tokens == 150
|
|
assert response.model == "custom-model/embedding-v1"
|
|
assert response.object == "list"
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
async def test_infinity_embedding_extra_params():
|
|
mock_response = AsyncMock()
|
|
|
|
def return_val():
|
|
return {
|
|
"data": [{"embedding": [0.1, 0.2, 0.3], "index": 0}],
|
|
"usage": {"prompt_tokens": 100, "total_tokens": 150},
|
|
"model": "custom-model/embedding-v1",
|
|
"object": "list"
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.headers = {"key": "value"}
|
|
mock_response.status_code = 200
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
response = await litellm.aembedding(
|
|
model="infinity/custom-model/embedding-v1",
|
|
input=["test input"],
|
|
dimensions=512,
|
|
encoding_format="float",
|
|
modality="text",
|
|
api_base="https://api.infinity.ai/embeddings",
|
|
)
|
|
|
|
mock_post.assert_called_once()
|
|
json_data = json.loads(mock_post.call_args.kwargs["data"])
|
|
|
|
# Assert the request parameters
|
|
assert json_data["input"] == ["test input"]
|
|
assert json_data["model"] == "custom-model/embedding-v1"
|
|
assert json_data["output_dimension"] == 512
|
|
assert json_data["encoding_format"] == "float"
|
|
assert json_data["modality"] == "text"
|
|
|
|
|
|
@pytest.mark.asyncio()
|
|
async def test_infinity_embedding_prompt_token_mapping():
|
|
mock_response = AsyncMock()
|
|
|
|
def return_val():
|
|
return {
|
|
"data": [{"embedding": [0.1, 0.2, 0.3], "index": 0}],
|
|
"usage": {"total_tokens": 1, "prompt_tokens": 1},
|
|
"model": "custom-model/embedding-v1",
|
|
"object": "list"
|
|
}
|
|
|
|
mock_response.json = return_val
|
|
mock_response.headers = {"key": "value"}
|
|
mock_response.status_code = 200
|
|
|
|
with patch(
|
|
"litellm.llms.custom_httpx.http_handler.AsyncHTTPHandler.post",
|
|
return_value=mock_response,
|
|
) as mock_post:
|
|
response = await litellm.aembedding(
|
|
model="infinity/custom-model/embedding-v1",
|
|
input=["a"],
|
|
dimensions=512,
|
|
encoding_format="float",
|
|
api_base="https://api.infinity.ai/embeddings",
|
|
)
|
|
|
|
mock_post.assert_called_once()
|
|
# Assert the response
|
|
assert response.usage.prompt_tokens == 1
|
|
assert response.usage.total_tokens == 1
|