litellm-mirror/litellm/llms/baseten.py
2023-08-30 19:14:48 -07:00

161 lines
6.7 KiB
Python

import os, json
from enum import Enum
import requests
import time
from typing import Callable
from litellm.utils import ModelResponse
class BasetenError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class BasetenLLM:
def __init__(self, encoding, logging_obj, api_key=None):
self.encoding = encoding
self.completion_url_fragment_1 = "https://app.baseten.co/models/"
self.completion_url_fragment_2 = "/predict"
self.api_key = api_key
self.logging_obj = logging_obj
self.validate_environment(api_key=api_key)
def validate_environment(
self, api_key
): # set up the environment required to run the model
# set the api key
if self.api_key == None:
raise ValueError(
"Missing Baseten API Key - A call is being made to baseten but no key is set either in the environment variables or via params"
)
self.api_key = api_key
self.headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": "Api-Key " + self.api_key,
}
def completion(
self,
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
optional_params=None,
litellm_params=None,
logger_fn=None,
): # logic for parsing in - calling - parsing out model completion calls
model = model
prompt = ""
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += f"{message['content']}"
else:
prompt += f"{message['content']}"
else:
prompt += f"{message['content']}"
data = {
# "prompt": prompt,
"inputs": prompt, # in case it's a TGI deployed model
# "instruction": prompt, # some baseten models require the prompt to be passed in via the 'instruction' kwarg
# **optional_params,
"parameters": optional_params,
"stream": True if "stream" in optional_params and optional_params["stream"] == True else False
}
## LOGGING
self.logging_obj.pre_call(
input=prompt,
api_key=self.api_key,
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
response = requests.post(
self.completion_url_fragment_1 + model + self.completion_url_fragment_2,
headers=self.headers,
data=json.dumps(data),
stream=True if "stream" in optional_params and optional_params["stream"] == True else False
)
if 'text/event-stream' in response.headers['Content-Type'] or ("stream" in optional_params and optional_params["stream"] == True):
return response.iter_lines()
else:
## LOGGING
self.logging_obj.post_call(
input=prompt,
api_key=self.api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
completion_response = response.json()
if "error" in completion_response:
raise BasetenError(
message=completion_response["error"],
status_code=response.status_code,
)
else:
if "model_output" in completion_response:
if (
isinstance(completion_response["model_output"], dict)
and "data" in completion_response["model_output"]
and isinstance(
completion_response["model_output"]["data"], list
)
):
model_response["choices"][0]["message"][
"content"
] = completion_response["model_output"]["data"][0]
elif isinstance(completion_response["model_output"], str):
model_response["choices"][0]["message"][
"content"
] = completion_response["model_output"]
elif "completion" in completion_response and isinstance(
completion_response["completion"], str
):
model_response["choices"][0]["message"][
"content"
] = completion_response["completion"]
elif isinstance(completion_response, list) and len(completion_response) > 0:
if "generated_text" not in completion_response:
raise BasetenError(
message=f"Unable to parse response. Original response: {response.text}",
status_code=response.status_code
)
model_response["choices"][0]["message"]["content"] = completion_response[0]["generated_text"]
## GETTING LOGPROBS
if "details" in completion_response[0] and "tokens" in completion_response[0]["details"]:
sum_logprob = 0
for token in completion_response[0]["details"]["tokens"]:
sum_logprob += token["logprob"]
model_response["choices"][0]["message"]["logprobs"] = sum_logprob
else:
raise BasetenError(
message=f"Unable to parse response. Original response: {response.text}",
status_code=response.status_code
)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(self.encoding.encode(prompt))
completion_tokens = len(
self.encoding.encode(model_response["choices"][0]["message"]["content"])
)
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
def embedding(
self,
): # logic for parsing in - calling - parsing out model embedding calls
pass