litellm-mirror/litellm/llms/together_ai.py
2023-08-29 12:54:56 -07:00

131 lines
4.6 KiB
Python

import os, json
from enum import Enum
import requests
import time
from typing import Callable
from litellm.utils import ModelResponse
class TogetherAIError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class TogetherAILLM:
def __init__(self, encoding, logging_obj, api_key=None):
self.encoding = encoding
self.completion_url = "https://api.together.xyz/inference"
self.api_key = api_key
self.logging_obj = logging_obj
self.validate_environment(api_key=api_key)
def validate_environment(
self, api_key
): # set up the environment required to run the model
# set the api key
if self.api_key == None:
raise ValueError(
"Missing TogetherAI API Key - A call is being made to together_ai but no key is set either in the environment variables or via params"
)
self.api_key = api_key
self.headers = {
"accept": "application/json",
"content-type": "application/json",
"Authorization": "Bearer " + self.api_key,
}
def completion(
self,
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
optional_params=None,
litellm_params=None,
logger_fn=None,
): # logic for parsing in - calling - parsing out model completion calls
model = model
prompt = ""
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += f"{message['content']}"
else:
prompt += f"{message['content']}"
else:
prompt += f"{message['content']}"
data = {
"model": model,
"prompt": prompt,
"request_type": "language-model-inference",
**optional_params,
}
## LOGGING
self.logging_obj.pre_call(
input=prompt,
api_key=self.api_key,
additional_args={"complete_input_dict": data},
)
## COMPLETION CALL
if (
"stream_tokens" in optional_params
and optional_params["stream_tokens"] == True
):
response = requests.post(
self.completion_url,
headers=self.headers,
data=json.dumps(data),
stream=optional_params["stream_tokens"],
)
return response.iter_lines()
else:
response = requests.post(
self.completion_url,
headers=self.headers,
data=json.dumps(data)
)
## LOGGING
self.logging_obj.post_call(
input=prompt,
api_key=self.api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
completion_response = response.json()
if "error" in completion_response:
raise TogetherAIError(
message=json.dumps(completion_response),
status_code=response.status_code,
)
elif "error" in completion_response["output"]:
raise TogetherAIError(message=json.dumps(completion_response["output"]), status_code=response.status_code)
completion_response = completion_response["output"]["choices"][0]["text"]
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(self.encoding.encode(prompt))
completion_tokens = len(
self.encoding.encode(completion_response)
)
model_response["choices"][0]["message"]["content"] = completion_response
model_response["created"] = time.time()
model_response["model"] = model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
def embedding(
self,
): # logic for parsing in - calling - parsing out model embedding calls
pass