mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
357 lines
10 KiB
Python
357 lines
10 KiB
Python
import sys, os
|
|
import traceback
|
|
import pytest
|
|
from dotenv import load_dotenv
|
|
import openai
|
|
|
|
load_dotenv()
|
|
|
|
sys.path.insert(
|
|
0, os.path.abspath("../..")
|
|
) # Adds the parent directory to the system path
|
|
import litellm
|
|
from litellm import embedding, completion
|
|
|
|
litellm.set_verbose = False
|
|
|
|
|
|
def test_openai_embedding():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = embedding(
|
|
model="text-embedding-ada-002",
|
|
input=["good morning from litellm", "this is another item"],
|
|
metadata={"anything": "good day"},
|
|
)
|
|
litellm_response = dict(response)
|
|
litellm_response_keys = set(litellm_response.keys())
|
|
litellm_response_keys.discard("_response_ms")
|
|
|
|
print(litellm_response_keys)
|
|
print("LiteLLM Response\n")
|
|
# print(litellm_response)
|
|
|
|
# same request with OpenAI 1.0+
|
|
import openai
|
|
|
|
client = openai.OpenAI(api_key=os.environ["OPENAI_API_KEY"])
|
|
response = client.embeddings.create(
|
|
model="text-embedding-ada-002",
|
|
input=["good morning from litellm", "this is another item"],
|
|
)
|
|
|
|
response = dict(response)
|
|
openai_response_keys = set(response.keys())
|
|
print(openai_response_keys)
|
|
assert (
|
|
litellm_response_keys == openai_response_keys
|
|
) # ENSURE the Keys in litellm response is exactly what the openai package returns
|
|
assert (
|
|
len(litellm_response["data"]) == 2
|
|
) # expect two embedding responses from litellm_response since input had two
|
|
print(openai_response_keys)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_openai_embedding()
|
|
|
|
|
|
def test_openai_azure_embedding_simple():
|
|
try:
|
|
response = embedding(
|
|
model="azure/azure-embedding-model",
|
|
input=["good morning from litellm"],
|
|
)
|
|
print(response)
|
|
response_keys = set(dict(response).keys())
|
|
response_keys.discard("_response_ms")
|
|
assert set(["usage", "model", "object", "data"]) == set(
|
|
response_keys
|
|
) # assert litellm response has expected keys from OpenAI embedding response
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_openai_azure_embedding_simple()
|
|
|
|
|
|
def test_openai_azure_embedding_timeouts():
|
|
try:
|
|
response = embedding(
|
|
model="azure/azure-embedding-model",
|
|
input=["good morning from litellm"],
|
|
timeout=0.00001,
|
|
)
|
|
print(response)
|
|
except openai.APITimeoutError:
|
|
print("Good job got timeout error!")
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(
|
|
f"Expected timeout error, did not get the correct error. Instead got {e}"
|
|
)
|
|
|
|
|
|
# test_openai_azure_embedding_timeouts()
|
|
|
|
|
|
def test_openai_embedding_timeouts():
|
|
try:
|
|
response = embedding(
|
|
model="text-embedding-ada-002",
|
|
input=["good morning from litellm"],
|
|
timeout=0.00001,
|
|
)
|
|
print(response)
|
|
except openai.APITimeoutError:
|
|
print("Good job got OpenAI timeout error!")
|
|
pass
|
|
except Exception as e:
|
|
pytest.fail(
|
|
f"Expected timeout error, did not get the correct error. Instead got {e}"
|
|
)
|
|
|
|
|
|
# test_openai_embedding_timeouts()
|
|
|
|
|
|
def test_openai_azure_embedding():
|
|
try:
|
|
api_key = os.environ["AZURE_API_KEY"]
|
|
api_base = os.environ["AZURE_API_BASE"]
|
|
api_version = os.environ["AZURE_API_VERSION"]
|
|
|
|
os.environ["AZURE_API_VERSION"] = ""
|
|
os.environ["AZURE_API_BASE"] = ""
|
|
os.environ["AZURE_API_KEY"] = ""
|
|
|
|
response = embedding(
|
|
model="azure/azure-embedding-model",
|
|
input=["good morning from litellm", "this is another item"],
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
api_version=api_version,
|
|
)
|
|
print(response)
|
|
|
|
os.environ["AZURE_API_VERSION"] = api_version
|
|
os.environ["AZURE_API_BASE"] = api_base
|
|
os.environ["AZURE_API_KEY"] = api_key
|
|
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_openai_azure_embedding()
|
|
|
|
# test_openai_embedding()
|
|
|
|
|
|
def test_cohere_embedding():
|
|
try:
|
|
# litellm.set_verbose=True
|
|
response = embedding(
|
|
model="embed-english-v2.0",
|
|
input=["good morning from litellm", "this is another item"],
|
|
)
|
|
print(f"response:", response)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_cohere_embedding()
|
|
|
|
|
|
def test_cohere_embedding3():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = embedding(
|
|
model="embed-english-v3.0",
|
|
input=["good morning from litellm", "this is another item"],
|
|
)
|
|
print(f"response:", response)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_cohere_embedding3()
|
|
|
|
|
|
def test_bedrock_embedding_titan():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = embedding(
|
|
model="amazon.titan-embed-text-v1",
|
|
input=[
|
|
"good morning from litellm, attempting to embed data",
|
|
"lets test a second string for good measure",
|
|
],
|
|
)
|
|
print(f"response:", response)
|
|
assert isinstance(
|
|
response["data"][0]["embedding"], list
|
|
), "Expected response to be a list"
|
|
print(f"type of first embedding:", type(response["data"][0]["embedding"][0]))
|
|
assert all(
|
|
isinstance(x, float) for x in response["data"][0]["embedding"]
|
|
), "Expected response to be a list of floats"
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_bedrock_embedding_titan()
|
|
|
|
|
|
def test_bedrock_embedding_cohere():
|
|
try:
|
|
litellm.set_verbose = False
|
|
response = embedding(
|
|
model="cohere.embed-multilingual-v3",
|
|
input=[
|
|
"good morning from litellm, attempting to embed data",
|
|
"lets test a second string for good measure",
|
|
],
|
|
aws_region_name="os.environ/AWS_REGION_NAME_2",
|
|
)
|
|
assert isinstance(
|
|
response["data"][0]["embedding"], list
|
|
), "Expected response to be a list"
|
|
print(f"type of first embedding:", type(response["data"][0]["embedding"][0]))
|
|
assert all(
|
|
isinstance(x, float) for x in response["data"][0]["embedding"]
|
|
), "Expected response to be a list of floats"
|
|
# print(f"response:", response)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_bedrock_embedding_cohere()
|
|
|
|
|
|
# comment out hf tests - since hf endpoints are unstable
|
|
def test_hf_embedding():
|
|
try:
|
|
# huggingface/microsoft/codebert-base
|
|
# huggingface/facebook/bart-large
|
|
response = embedding(
|
|
model="huggingface/sentence-transformers/all-MiniLM-L6-v2",
|
|
input=["good morning from litellm", "this is another item"],
|
|
)
|
|
print(f"response:", response)
|
|
except Exception as e:
|
|
# Note: Huggingface inference API is unstable and fails with "model loading errors all the time"
|
|
pass
|
|
|
|
|
|
# test_hf_embedding()
|
|
|
|
|
|
# test async embeddings
|
|
def test_aembedding():
|
|
try:
|
|
import asyncio
|
|
|
|
async def embedding_call():
|
|
try:
|
|
response = await litellm.aembedding(
|
|
model="text-embedding-ada-002",
|
|
input=["good morning from litellm", "this is another item"],
|
|
)
|
|
print(response)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
asyncio.run(embedding_call())
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_aembedding()
|
|
|
|
|
|
def test_aembedding_azure():
|
|
try:
|
|
import asyncio
|
|
|
|
async def embedding_call():
|
|
try:
|
|
response = await litellm.aembedding(
|
|
model="azure/azure-embedding-model",
|
|
input=["good morning from litellm", "this is another item"],
|
|
)
|
|
print(response)
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
asyncio.run(embedding_call())
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_aembedding_azure()
|
|
|
|
|
|
def test_sagemaker_embeddings():
|
|
try:
|
|
response = litellm.embedding(
|
|
model="sagemaker/berri-benchmarking-gpt-j-6b-fp16",
|
|
input=["good morning from litellm", "this is another item"],
|
|
)
|
|
print(f"response: {response}")
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
def test_mistral_embeddings():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = litellm.embedding(
|
|
model="mistral/mistral-embed",
|
|
input=["good morning from litellm"],
|
|
)
|
|
print(f"response: {response}")
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_mistral_embeddings()
|
|
|
|
|
|
def test_voyage_embeddings():
|
|
try:
|
|
litellm.set_verbose = True
|
|
response = litellm.embedding(
|
|
model="voyage/voyage-01",
|
|
input=["good morning from litellm"],
|
|
)
|
|
print(f"response: {response}")
|
|
except Exception as e:
|
|
pytest.fail(f"Error occurred: {e}")
|
|
|
|
|
|
# test_voyage_embeddings()
|
|
# def test_xinference_embeddings():
|
|
# try:
|
|
# litellm.set_verbose = True
|
|
# response = litellm.embedding(
|
|
# model="xinference/bge-base-en",
|
|
# input=["good morning from litellm"],
|
|
# )
|
|
# print(f"response: {response}")
|
|
# except Exception as e:
|
|
# pytest.fail(f"Error occurred: {e}")
|
|
# test_xinference_embeddings()
|
|
|
|
# test_sagemaker_embeddings()
|
|
# def local_proxy_embeddings():
|
|
# litellm.set_verbose=True
|
|
# response = embedding(
|
|
# model="openai/custom_embedding",
|
|
# input=["good morning from litellm"],
|
|
# api_base="http://0.0.0.0:8000/"
|
|
# )
|
|
# print(response)
|
|
|
|
# local_proxy_embeddings()
|