mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-27 03:34:10 +00:00
771 lines
26 KiB
Python
771 lines
26 KiB
Python
# What is this?
|
|
## Main file for assistants API logic
|
|
from typing import Iterable
|
|
from functools import partial
|
|
import os, asyncio, contextvars
|
|
import litellm
|
|
from openai import OpenAI, AsyncOpenAI
|
|
from litellm import client
|
|
from litellm.utils import supports_httpx_timeout, exception_type, get_llm_provider
|
|
from ..llms.openai import OpenAIAssistantsAPI
|
|
from ..types.llms.openai import *
|
|
from ..types.router import *
|
|
|
|
####### ENVIRONMENT VARIABLES ###################
|
|
openai_assistants_api = OpenAIAssistantsAPI()
|
|
|
|
### ASSISTANTS ###
|
|
|
|
|
|
async def aget_assistants(
|
|
custom_llm_provider: Literal["openai"],
|
|
client: Optional[AsyncOpenAI] = None,
|
|
**kwargs,
|
|
) -> AsyncCursorPage[Assistant]:
|
|
loop = asyncio.get_event_loop()
|
|
### PASS ARGS TO GET ASSISTANTS ###
|
|
kwargs["aget_assistants"] = True
|
|
try:
|
|
# Use a partial function to pass your keyword arguments
|
|
func = partial(get_assistants, custom_llm_provider, client, **kwargs)
|
|
|
|
# Add the context to the function
|
|
ctx = contextvars.copy_context()
|
|
func_with_context = partial(ctx.run, func)
|
|
|
|
_, custom_llm_provider, _, _ = get_llm_provider( # type: ignore
|
|
model="", custom_llm_provider=custom_llm_provider
|
|
) # type: ignore
|
|
|
|
# Await normally
|
|
init_response = await loop.run_in_executor(None, func_with_context)
|
|
if asyncio.iscoroutine(init_response):
|
|
response = await init_response
|
|
else:
|
|
response = init_response
|
|
return response # type: ignore
|
|
except Exception as e:
|
|
raise exception_type(
|
|
model="",
|
|
custom_llm_provider=custom_llm_provider,
|
|
original_exception=e,
|
|
completion_kwargs={},
|
|
extra_kwargs=kwargs,
|
|
)
|
|
|
|
|
|
def get_assistants(
|
|
custom_llm_provider: Literal["openai"],
|
|
client: Optional[OpenAI] = None,
|
|
**kwargs,
|
|
) -> SyncCursorPage[Assistant]:
|
|
aget_assistants = kwargs.pop("aget_assistants", None)
|
|
optional_params = GenericLiteLLMParams(**kwargs)
|
|
|
|
### TIMEOUT LOGIC ###
|
|
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
|
|
# set timeout for 10 minutes by default
|
|
|
|
if (
|
|
timeout is not None
|
|
and isinstance(timeout, httpx.Timeout)
|
|
and supports_httpx_timeout(custom_llm_provider) == False
|
|
):
|
|
read_timeout = timeout.read or 600
|
|
timeout = read_timeout # default 10 min timeout
|
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
|
|
timeout = float(timeout) # type: ignore
|
|
elif timeout is None:
|
|
timeout = 600.0
|
|
|
|
response: Optional[SyncCursorPage[Assistant]] = None
|
|
if custom_llm_provider == "openai":
|
|
api_base = (
|
|
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
|
|
or litellm.api_base
|
|
or os.getenv("OPENAI_API_BASE")
|
|
or "https://api.openai.com/v1"
|
|
)
|
|
organization = (
|
|
optional_params.organization
|
|
or litellm.organization
|
|
or os.getenv("OPENAI_ORGANIZATION", None)
|
|
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
|
|
)
|
|
# set API KEY
|
|
api_key = (
|
|
optional_params.api_key
|
|
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
|
|
or litellm.openai_key
|
|
or os.getenv("OPENAI_API_KEY")
|
|
)
|
|
response = openai_assistants_api.get_assistants(
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
timeout=timeout,
|
|
max_retries=optional_params.max_retries,
|
|
organization=organization,
|
|
client=client,
|
|
aget_assistants=aget_assistants,
|
|
)
|
|
else:
|
|
raise litellm.exceptions.BadRequestError(
|
|
message="LiteLLM doesn't support {} for 'get_assistants'. Only 'openai' is supported.".format(
|
|
custom_llm_provider
|
|
),
|
|
model="n/a",
|
|
llm_provider=custom_llm_provider,
|
|
response=httpx.Response(
|
|
status_code=400,
|
|
content="Unsupported provider",
|
|
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
|
|
),
|
|
)
|
|
return response
|
|
|
|
|
|
### THREADS ###
|
|
|
|
|
|
async def acreate_thread(custom_llm_provider: Literal["openai"], **kwargs) -> Thread:
|
|
loop = asyncio.get_event_loop()
|
|
### PASS ARGS TO GET ASSISTANTS ###
|
|
kwargs["acreate_thread"] = True
|
|
try:
|
|
# Use a partial function to pass your keyword arguments
|
|
func = partial(create_thread, custom_llm_provider, **kwargs)
|
|
|
|
# Add the context to the function
|
|
ctx = contextvars.copy_context()
|
|
func_with_context = partial(ctx.run, func)
|
|
|
|
_, custom_llm_provider, _, _ = get_llm_provider( # type: ignore
|
|
model="", custom_llm_provider=custom_llm_provider
|
|
) # type: ignore
|
|
|
|
# Await normally
|
|
init_response = await loop.run_in_executor(None, func_with_context)
|
|
if asyncio.iscoroutine(init_response):
|
|
response = await init_response
|
|
else:
|
|
response = init_response
|
|
return response # type: ignore
|
|
except Exception as e:
|
|
raise exception_type(
|
|
model="",
|
|
custom_llm_provider=custom_llm_provider,
|
|
original_exception=e,
|
|
completion_kwargs={},
|
|
extra_kwargs=kwargs,
|
|
)
|
|
|
|
|
|
def create_thread(
|
|
custom_llm_provider: Literal["openai"],
|
|
messages: Optional[Iterable[OpenAICreateThreadParamsMessage]] = None,
|
|
metadata: Optional[dict] = None,
|
|
tool_resources: Optional[OpenAICreateThreadParamsToolResources] = None,
|
|
client: Optional[OpenAI] = None,
|
|
**kwargs,
|
|
) -> Thread:
|
|
"""
|
|
- get the llm provider
|
|
- if openai - route it there
|
|
- pass through relevant params
|
|
|
|
```
|
|
from litellm import create_thread
|
|
|
|
create_thread(
|
|
custom_llm_provider="openai",
|
|
### OPTIONAL ###
|
|
messages = {
|
|
"role": "user",
|
|
"content": "Hello, what is AI?"
|
|
},
|
|
{
|
|
"role": "user",
|
|
"content": "How does AI work? Explain it in simple terms."
|
|
}]
|
|
)
|
|
```
|
|
"""
|
|
acreate_thread = kwargs.get("acreate_thread", None)
|
|
optional_params = GenericLiteLLMParams(**kwargs)
|
|
|
|
### TIMEOUT LOGIC ###
|
|
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
|
|
# set timeout for 10 minutes by default
|
|
|
|
if (
|
|
timeout is not None
|
|
and isinstance(timeout, httpx.Timeout)
|
|
and supports_httpx_timeout(custom_llm_provider) == False
|
|
):
|
|
read_timeout = timeout.read or 600
|
|
timeout = read_timeout # default 10 min timeout
|
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
|
|
timeout = float(timeout) # type: ignore
|
|
elif timeout is None:
|
|
timeout = 600.0
|
|
|
|
response: Optional[Thread] = None
|
|
if custom_llm_provider == "openai":
|
|
api_base = (
|
|
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
|
|
or litellm.api_base
|
|
or os.getenv("OPENAI_API_BASE")
|
|
or "https://api.openai.com/v1"
|
|
)
|
|
organization = (
|
|
optional_params.organization
|
|
or litellm.organization
|
|
or os.getenv("OPENAI_ORGANIZATION", None)
|
|
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
|
|
)
|
|
# set API KEY
|
|
api_key = (
|
|
optional_params.api_key
|
|
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
|
|
or litellm.openai_key
|
|
or os.getenv("OPENAI_API_KEY")
|
|
)
|
|
response = openai_assistants_api.create_thread(
|
|
messages=messages,
|
|
metadata=metadata,
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
timeout=timeout,
|
|
max_retries=optional_params.max_retries,
|
|
organization=organization,
|
|
client=client,
|
|
acreate_thread=acreate_thread,
|
|
)
|
|
else:
|
|
raise litellm.exceptions.BadRequestError(
|
|
message="LiteLLM doesn't support {} for 'create_thread'. Only 'openai' is supported.".format(
|
|
custom_llm_provider
|
|
),
|
|
model="n/a",
|
|
llm_provider=custom_llm_provider,
|
|
response=httpx.Response(
|
|
status_code=400,
|
|
content="Unsupported provider",
|
|
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
|
|
),
|
|
)
|
|
return response
|
|
|
|
|
|
async def aget_thread(
|
|
custom_llm_provider: Literal["openai"],
|
|
thread_id: str,
|
|
client: Optional[AsyncOpenAI] = None,
|
|
**kwargs,
|
|
) -> Thread:
|
|
loop = asyncio.get_event_loop()
|
|
### PASS ARGS TO GET ASSISTANTS ###
|
|
kwargs["aget_thread"] = True
|
|
try:
|
|
# Use a partial function to pass your keyword arguments
|
|
func = partial(get_thread, custom_llm_provider, thread_id, client, **kwargs)
|
|
|
|
# Add the context to the function
|
|
ctx = contextvars.copy_context()
|
|
func_with_context = partial(ctx.run, func)
|
|
|
|
_, custom_llm_provider, _, _ = get_llm_provider( # type: ignore
|
|
model="", custom_llm_provider=custom_llm_provider
|
|
) # type: ignore
|
|
|
|
# Await normally
|
|
init_response = await loop.run_in_executor(None, func_with_context)
|
|
if asyncio.iscoroutine(init_response):
|
|
response = await init_response
|
|
else:
|
|
response = init_response
|
|
return response # type: ignore
|
|
except Exception as e:
|
|
raise exception_type(
|
|
model="",
|
|
custom_llm_provider=custom_llm_provider,
|
|
original_exception=e,
|
|
completion_kwargs={},
|
|
extra_kwargs=kwargs,
|
|
)
|
|
|
|
|
|
def get_thread(
|
|
custom_llm_provider: Literal["openai"],
|
|
thread_id: str,
|
|
client: Optional[OpenAI] = None,
|
|
**kwargs,
|
|
) -> Thread:
|
|
"""Get the thread object, given a thread_id"""
|
|
aget_thread = kwargs.pop("aget_thread", None)
|
|
optional_params = GenericLiteLLMParams(**kwargs)
|
|
|
|
### TIMEOUT LOGIC ###
|
|
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
|
|
# set timeout for 10 minutes by default
|
|
|
|
if (
|
|
timeout is not None
|
|
and isinstance(timeout, httpx.Timeout)
|
|
and supports_httpx_timeout(custom_llm_provider) == False
|
|
):
|
|
read_timeout = timeout.read or 600
|
|
timeout = read_timeout # default 10 min timeout
|
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
|
|
timeout = float(timeout) # type: ignore
|
|
elif timeout is None:
|
|
timeout = 600.0
|
|
|
|
response: Optional[Thread] = None
|
|
if custom_llm_provider == "openai":
|
|
api_base = (
|
|
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
|
|
or litellm.api_base
|
|
or os.getenv("OPENAI_API_BASE")
|
|
or "https://api.openai.com/v1"
|
|
)
|
|
organization = (
|
|
optional_params.organization
|
|
or litellm.organization
|
|
or os.getenv("OPENAI_ORGANIZATION", None)
|
|
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
|
|
)
|
|
# set API KEY
|
|
api_key = (
|
|
optional_params.api_key
|
|
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
|
|
or litellm.openai_key
|
|
or os.getenv("OPENAI_API_KEY")
|
|
)
|
|
response = openai_assistants_api.get_thread(
|
|
thread_id=thread_id,
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
timeout=timeout,
|
|
max_retries=optional_params.max_retries,
|
|
organization=organization,
|
|
client=client,
|
|
aget_thread=aget_thread,
|
|
)
|
|
else:
|
|
raise litellm.exceptions.BadRequestError(
|
|
message="LiteLLM doesn't support {} for 'get_thread'. Only 'openai' is supported.".format(
|
|
custom_llm_provider
|
|
),
|
|
model="n/a",
|
|
llm_provider=custom_llm_provider,
|
|
response=httpx.Response(
|
|
status_code=400,
|
|
content="Unsupported provider",
|
|
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
|
|
),
|
|
)
|
|
return response
|
|
|
|
|
|
### MESSAGES ###
|
|
|
|
|
|
async def a_add_message(
|
|
custom_llm_provider: Literal["openai"],
|
|
thread_id: str,
|
|
role: Literal["user", "assistant"],
|
|
content: str,
|
|
attachments: Optional[List[Attachment]] = None,
|
|
metadata: Optional[dict] = None,
|
|
client: Optional[AsyncOpenAI] = None,
|
|
**kwargs,
|
|
) -> OpenAIMessage:
|
|
loop = asyncio.get_event_loop()
|
|
### PASS ARGS TO GET ASSISTANTS ###
|
|
kwargs["a_add_message"] = True
|
|
try:
|
|
# Use a partial function to pass your keyword arguments
|
|
func = partial(
|
|
add_message,
|
|
custom_llm_provider,
|
|
thread_id,
|
|
role,
|
|
content,
|
|
attachments,
|
|
metadata,
|
|
client,
|
|
**kwargs,
|
|
)
|
|
|
|
# Add the context to the function
|
|
ctx = contextvars.copy_context()
|
|
func_with_context = partial(ctx.run, func)
|
|
|
|
_, custom_llm_provider, _, _ = get_llm_provider( # type: ignore
|
|
model="", custom_llm_provider=custom_llm_provider
|
|
) # type: ignore
|
|
|
|
# Await normally
|
|
init_response = await loop.run_in_executor(None, func_with_context)
|
|
if asyncio.iscoroutine(init_response):
|
|
response = await init_response
|
|
else:
|
|
# Call the synchronous function using run_in_executor
|
|
response = init_response
|
|
return response # type: ignore
|
|
except Exception as e:
|
|
raise exception_type(
|
|
model="",
|
|
custom_llm_provider=custom_llm_provider,
|
|
original_exception=e,
|
|
completion_kwargs={},
|
|
extra_kwargs=kwargs,
|
|
)
|
|
|
|
|
|
def add_message(
|
|
custom_llm_provider: Literal["openai"],
|
|
thread_id: str,
|
|
role: Literal["user", "assistant"],
|
|
content: str,
|
|
attachments: Optional[List[Attachment]] = None,
|
|
metadata: Optional[dict] = None,
|
|
client: Optional[OpenAI] = None,
|
|
**kwargs,
|
|
) -> OpenAIMessage:
|
|
### COMMON OBJECTS ###
|
|
a_add_message = kwargs.pop("a_add_message", None)
|
|
message_data = MessageData(
|
|
role=role, content=content, attachments=attachments, metadata=metadata
|
|
)
|
|
optional_params = GenericLiteLLMParams(**kwargs)
|
|
|
|
### TIMEOUT LOGIC ###
|
|
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
|
|
# set timeout for 10 minutes by default
|
|
|
|
if (
|
|
timeout is not None
|
|
and isinstance(timeout, httpx.Timeout)
|
|
and supports_httpx_timeout(custom_llm_provider) == False
|
|
):
|
|
read_timeout = timeout.read or 600
|
|
timeout = read_timeout # default 10 min timeout
|
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
|
|
timeout = float(timeout) # type: ignore
|
|
elif timeout is None:
|
|
timeout = 600.0
|
|
|
|
response: Optional[OpenAIMessage] = None
|
|
if custom_llm_provider == "openai":
|
|
api_base = (
|
|
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
|
|
or litellm.api_base
|
|
or os.getenv("OPENAI_API_BASE")
|
|
or "https://api.openai.com/v1"
|
|
)
|
|
organization = (
|
|
optional_params.organization
|
|
or litellm.organization
|
|
or os.getenv("OPENAI_ORGANIZATION", None)
|
|
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
|
|
)
|
|
# set API KEY
|
|
api_key = (
|
|
optional_params.api_key
|
|
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
|
|
or litellm.openai_key
|
|
or os.getenv("OPENAI_API_KEY")
|
|
)
|
|
response = openai_assistants_api.add_message(
|
|
thread_id=thread_id,
|
|
message_data=message_data,
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
timeout=timeout,
|
|
max_retries=optional_params.max_retries,
|
|
organization=organization,
|
|
client=client,
|
|
a_add_message=a_add_message,
|
|
)
|
|
else:
|
|
raise litellm.exceptions.BadRequestError(
|
|
message="LiteLLM doesn't support {} for 'create_thread'. Only 'openai' is supported.".format(
|
|
custom_llm_provider
|
|
),
|
|
model="n/a",
|
|
llm_provider=custom_llm_provider,
|
|
response=httpx.Response(
|
|
status_code=400,
|
|
content="Unsupported provider",
|
|
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
|
|
),
|
|
)
|
|
|
|
return response
|
|
|
|
|
|
async def aget_messages(
|
|
custom_llm_provider: Literal["openai"],
|
|
thread_id: str,
|
|
client: Optional[AsyncOpenAI] = None,
|
|
**kwargs,
|
|
) -> AsyncCursorPage[OpenAIMessage]:
|
|
loop = asyncio.get_event_loop()
|
|
### PASS ARGS TO GET ASSISTANTS ###
|
|
kwargs["aget_messages"] = True
|
|
try:
|
|
# Use a partial function to pass your keyword arguments
|
|
func = partial(
|
|
get_messages,
|
|
custom_llm_provider,
|
|
thread_id,
|
|
client,
|
|
**kwargs,
|
|
)
|
|
|
|
# Add the context to the function
|
|
ctx = contextvars.copy_context()
|
|
func_with_context = partial(ctx.run, func)
|
|
|
|
_, custom_llm_provider, _, _ = get_llm_provider( # type: ignore
|
|
model="", custom_llm_provider=custom_llm_provider
|
|
) # type: ignore
|
|
|
|
# Await normally
|
|
init_response = await loop.run_in_executor(None, func_with_context)
|
|
if asyncio.iscoroutine(init_response):
|
|
response = await init_response
|
|
else:
|
|
# Call the synchronous function using run_in_executor
|
|
response = init_response
|
|
return response # type: ignore
|
|
except Exception as e:
|
|
raise exception_type(
|
|
model="",
|
|
custom_llm_provider=custom_llm_provider,
|
|
original_exception=e,
|
|
completion_kwargs={},
|
|
extra_kwargs=kwargs,
|
|
)
|
|
|
|
|
|
def get_messages(
|
|
custom_llm_provider: Literal["openai"],
|
|
thread_id: str,
|
|
client: Optional[OpenAI] = None,
|
|
**kwargs,
|
|
) -> SyncCursorPage[OpenAIMessage]:
|
|
aget_messages = kwargs.pop("aget_messages", None)
|
|
optional_params = GenericLiteLLMParams(**kwargs)
|
|
|
|
### TIMEOUT LOGIC ###
|
|
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
|
|
# set timeout for 10 minutes by default
|
|
|
|
if (
|
|
timeout is not None
|
|
and isinstance(timeout, httpx.Timeout)
|
|
and supports_httpx_timeout(custom_llm_provider) == False
|
|
):
|
|
read_timeout = timeout.read or 600
|
|
timeout = read_timeout # default 10 min timeout
|
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
|
|
timeout = float(timeout) # type: ignore
|
|
elif timeout is None:
|
|
timeout = 600.0
|
|
|
|
response: Optional[SyncCursorPage[OpenAIMessage]] = None
|
|
if custom_llm_provider == "openai":
|
|
api_base = (
|
|
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
|
|
or litellm.api_base
|
|
or os.getenv("OPENAI_API_BASE")
|
|
or "https://api.openai.com/v1"
|
|
)
|
|
organization = (
|
|
optional_params.organization
|
|
or litellm.organization
|
|
or os.getenv("OPENAI_ORGANIZATION", None)
|
|
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
|
|
)
|
|
# set API KEY
|
|
api_key = (
|
|
optional_params.api_key
|
|
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
|
|
or litellm.openai_key
|
|
or os.getenv("OPENAI_API_KEY")
|
|
)
|
|
response = openai_assistants_api.get_messages(
|
|
thread_id=thread_id,
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
timeout=timeout,
|
|
max_retries=optional_params.max_retries,
|
|
organization=organization,
|
|
client=client,
|
|
aget_messages=aget_messages,
|
|
)
|
|
else:
|
|
raise litellm.exceptions.BadRequestError(
|
|
message="LiteLLM doesn't support {} for 'get_messages'. Only 'openai' is supported.".format(
|
|
custom_llm_provider
|
|
),
|
|
model="n/a",
|
|
llm_provider=custom_llm_provider,
|
|
response=httpx.Response(
|
|
status_code=400,
|
|
content="Unsupported provider",
|
|
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
|
|
),
|
|
)
|
|
|
|
return response
|
|
|
|
|
|
### RUNS ###
|
|
async def arun_thread(
|
|
custom_llm_provider: Literal["openai"],
|
|
thread_id: str,
|
|
assistant_id: str,
|
|
additional_instructions: Optional[str] = None,
|
|
instructions: Optional[str] = None,
|
|
metadata: Optional[dict] = None,
|
|
model: Optional[str] = None,
|
|
stream: Optional[bool] = None,
|
|
tools: Optional[Iterable[AssistantToolParam]] = None,
|
|
client: Optional[AsyncOpenAI] = None,
|
|
**kwargs,
|
|
) -> Run:
|
|
loop = asyncio.get_event_loop()
|
|
### PASS ARGS TO GET ASSISTANTS ###
|
|
kwargs["arun_thread"] = True
|
|
try:
|
|
# Use a partial function to pass your keyword arguments
|
|
func = partial(
|
|
run_thread,
|
|
custom_llm_provider,
|
|
thread_id,
|
|
assistant_id,
|
|
additional_instructions,
|
|
instructions,
|
|
metadata,
|
|
model,
|
|
stream,
|
|
tools,
|
|
client,
|
|
**kwargs,
|
|
)
|
|
|
|
# Add the context to the function
|
|
ctx = contextvars.copy_context()
|
|
func_with_context = partial(ctx.run, func)
|
|
|
|
_, custom_llm_provider, _, _ = get_llm_provider( # type: ignore
|
|
model="", custom_llm_provider=custom_llm_provider
|
|
) # type: ignore
|
|
|
|
# Await normally
|
|
init_response = await loop.run_in_executor(None, func_with_context)
|
|
if asyncio.iscoroutine(init_response):
|
|
response = await init_response
|
|
else:
|
|
# Call the synchronous function using run_in_executor
|
|
response = init_response
|
|
return response # type: ignore
|
|
except Exception as e:
|
|
raise exception_type(
|
|
model="",
|
|
custom_llm_provider=custom_llm_provider,
|
|
original_exception=e,
|
|
completion_kwargs={},
|
|
extra_kwargs=kwargs,
|
|
)
|
|
|
|
|
|
def run_thread(
|
|
custom_llm_provider: Literal["openai"],
|
|
thread_id: str,
|
|
assistant_id: str,
|
|
additional_instructions: Optional[str] = None,
|
|
instructions: Optional[str] = None,
|
|
metadata: Optional[dict] = None,
|
|
model: Optional[str] = None,
|
|
stream: Optional[bool] = None,
|
|
tools: Optional[Iterable[AssistantToolParam]] = None,
|
|
client: Optional[OpenAI] = None,
|
|
**kwargs,
|
|
) -> Run:
|
|
"""Run a given thread + assistant."""
|
|
arun_thread = kwargs.pop("arun_thread", None)
|
|
optional_params = GenericLiteLLMParams(**kwargs)
|
|
|
|
### TIMEOUT LOGIC ###
|
|
timeout = optional_params.timeout or kwargs.get("request_timeout", 600) or 600
|
|
# set timeout for 10 minutes by default
|
|
|
|
if (
|
|
timeout is not None
|
|
and isinstance(timeout, httpx.Timeout)
|
|
and supports_httpx_timeout(custom_llm_provider) == False
|
|
):
|
|
read_timeout = timeout.read or 600
|
|
timeout = read_timeout # default 10 min timeout
|
|
elif timeout is not None and not isinstance(timeout, httpx.Timeout):
|
|
timeout = float(timeout) # type: ignore
|
|
elif timeout is None:
|
|
timeout = 600.0
|
|
|
|
response: Optional[Run] = None
|
|
if custom_llm_provider == "openai":
|
|
api_base = (
|
|
optional_params.api_base # for deepinfra/perplexity/anyscale/groq we check in get_llm_provider and pass in the api base from there
|
|
or litellm.api_base
|
|
or os.getenv("OPENAI_API_BASE")
|
|
or "https://api.openai.com/v1"
|
|
)
|
|
organization = (
|
|
optional_params.organization
|
|
or litellm.organization
|
|
or os.getenv("OPENAI_ORGANIZATION", None)
|
|
or None # default - https://github.com/openai/openai-python/blob/284c1799070c723c6a553337134148a7ab088dd8/openai/util.py#L105
|
|
)
|
|
# set API KEY
|
|
api_key = (
|
|
optional_params.api_key
|
|
or litellm.api_key # for deepinfra/perplexity/anyscale we check in get_llm_provider and pass in the api key from there
|
|
or litellm.openai_key
|
|
or os.getenv("OPENAI_API_KEY")
|
|
)
|
|
response = openai_assistants_api.run_thread(
|
|
thread_id=thread_id,
|
|
assistant_id=assistant_id,
|
|
additional_instructions=additional_instructions,
|
|
instructions=instructions,
|
|
metadata=metadata,
|
|
model=model,
|
|
stream=stream,
|
|
tools=tools,
|
|
api_base=api_base,
|
|
api_key=api_key,
|
|
timeout=timeout,
|
|
max_retries=optional_params.max_retries,
|
|
organization=organization,
|
|
client=client,
|
|
arun_thread=arun_thread,
|
|
)
|
|
else:
|
|
raise litellm.exceptions.BadRequestError(
|
|
message="LiteLLM doesn't support {} for 'run_thread'. Only 'openai' is supported.".format(
|
|
custom_llm_provider
|
|
),
|
|
model="n/a",
|
|
llm_provider=custom_llm_provider,
|
|
response=httpx.Response(
|
|
status_code=400,
|
|
content="Unsupported provider",
|
|
request=httpx.Request(method="create_thread", url="https://github.com/BerriAI/litellm"), # type: ignore
|
|
),
|
|
)
|
|
return response
|