mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 03:04:13 +00:00
* move _process_response in transformation * fix AnthropicConfig test * add AnthropicConfig * fix anthropic_passthrough_handler * fix get_response_body * fix check for streaming response * use 1 helper to return stream_response on passthrough
267 lines
9.1 KiB
Python
267 lines
9.1 KiB
Python
import json
|
|
import re
|
|
import threading
|
|
from datetime import datetime
|
|
from typing import Optional, Union
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm._logging import verbose_proxy_logger
|
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
|
from litellm.litellm_core_utils.litellm_logging import (
|
|
get_standard_logging_object_payload,
|
|
)
|
|
from litellm.llms.anthropic.chat.transformation import AnthropicConfig
|
|
from litellm.llms.vertex_ai_and_google_ai_studio.gemini.vertex_and_google_ai_studio_gemini import (
|
|
VertexLLM,
|
|
)
|
|
from litellm.proxy.auth.user_api_key_auth import user_api_key_auth
|
|
from litellm.types.utils import StandardPassThroughResponseObject
|
|
|
|
|
|
class PassThroughEndpointLogging:
|
|
def __init__(self):
|
|
self.TRACKED_VERTEX_ROUTES = [
|
|
"generateContent",
|
|
"streamGenerateContent",
|
|
"predict",
|
|
]
|
|
|
|
# Anthropic
|
|
self.TRACKED_ANTHROPIC_ROUTES = ["/messages"]
|
|
|
|
async def pass_through_async_success_handler(
|
|
self,
|
|
httpx_response: httpx.Response,
|
|
response_body: Optional[dict],
|
|
logging_obj: LiteLLMLoggingObj,
|
|
url_route: str,
|
|
result: str,
|
|
start_time: datetime,
|
|
end_time: datetime,
|
|
cache_hit: bool,
|
|
**kwargs,
|
|
):
|
|
if self.is_vertex_route(url_route):
|
|
await self.vertex_passthrough_handler(
|
|
httpx_response=httpx_response,
|
|
logging_obj=logging_obj,
|
|
url_route=url_route,
|
|
result=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
cache_hit=cache_hit,
|
|
**kwargs,
|
|
)
|
|
elif self.is_anthropic_route(url_route):
|
|
await self.anthropic_passthrough_handler(
|
|
httpx_response=httpx_response,
|
|
response_body=response_body or {},
|
|
logging_obj=logging_obj,
|
|
url_route=url_route,
|
|
result=result,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
cache_hit=cache_hit,
|
|
**kwargs,
|
|
)
|
|
else:
|
|
standard_logging_response_object = StandardPassThroughResponseObject(
|
|
response=httpx_response.text
|
|
)
|
|
threading.Thread(
|
|
target=logging_obj.success_handler,
|
|
args=(
|
|
standard_logging_response_object,
|
|
start_time,
|
|
end_time,
|
|
cache_hit,
|
|
),
|
|
).start()
|
|
await logging_obj.async_success_handler(
|
|
result=(
|
|
json.dumps(result)
|
|
if isinstance(result, dict)
|
|
else standard_logging_response_object
|
|
),
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
cache_hit=False,
|
|
**kwargs,
|
|
)
|
|
|
|
def is_vertex_route(self, url_route: str):
|
|
for route in self.TRACKED_VERTEX_ROUTES:
|
|
if route in url_route:
|
|
return True
|
|
return False
|
|
|
|
def is_anthropic_route(self, url_route: str):
|
|
for route in self.TRACKED_ANTHROPIC_ROUTES:
|
|
if route in url_route:
|
|
return True
|
|
return False
|
|
|
|
def extract_model_from_url(self, url: str) -> str:
|
|
pattern = r"/models/([^:]+)"
|
|
match = re.search(pattern, url)
|
|
if match:
|
|
return match.group(1)
|
|
return "unknown"
|
|
|
|
async def anthropic_passthrough_handler(
|
|
self,
|
|
httpx_response: httpx.Response,
|
|
response_body: dict,
|
|
logging_obj: LiteLLMLoggingObj,
|
|
url_route: str,
|
|
result: str,
|
|
start_time: datetime,
|
|
end_time: datetime,
|
|
cache_hit: bool,
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Transforms Anthropic response to OpenAI response, generates a standard logging object so downstream logging can be handled
|
|
"""
|
|
model = response_body.get("model", "")
|
|
litellm_model_response: litellm.ModelResponse = (
|
|
AnthropicConfig._process_response(
|
|
response=httpx_response,
|
|
model_response=litellm.ModelResponse(),
|
|
model=model,
|
|
stream=False,
|
|
messages=[],
|
|
logging_obj=logging_obj,
|
|
optional_params={},
|
|
api_key="",
|
|
data={},
|
|
print_verbose=litellm.print_verbose,
|
|
encoding=None,
|
|
json_mode=False,
|
|
)
|
|
)
|
|
|
|
response_cost = litellm.completion_cost(
|
|
completion_response=litellm_model_response,
|
|
model=model,
|
|
)
|
|
kwargs["response_cost"] = response_cost
|
|
kwargs["model"] = model
|
|
|
|
# Make standard logging object for Vertex AI
|
|
standard_logging_object = get_standard_logging_object_payload(
|
|
kwargs=kwargs,
|
|
init_response_obj=litellm_model_response,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
logging_obj=logging_obj,
|
|
status="success",
|
|
)
|
|
|
|
# pretty print standard logging object
|
|
verbose_proxy_logger.debug(
|
|
"standard_logging_object= %s", json.dumps(standard_logging_object, indent=4)
|
|
)
|
|
kwargs["standard_logging_object"] = standard_logging_object
|
|
|
|
await logging_obj.async_success_handler(
|
|
result=litellm_model_response,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
cache_hit=cache_hit,
|
|
**kwargs,
|
|
)
|
|
|
|
pass
|
|
|
|
async def vertex_passthrough_handler(
|
|
self,
|
|
httpx_response: httpx.Response,
|
|
logging_obj: LiteLLMLoggingObj,
|
|
url_route: str,
|
|
result: str,
|
|
start_time: datetime,
|
|
end_time: datetime,
|
|
cache_hit: bool,
|
|
**kwargs,
|
|
):
|
|
if "generateContent" in url_route:
|
|
model = self.extract_model_from_url(url_route)
|
|
|
|
instance_of_vertex_llm = litellm.VertexGeminiConfig()
|
|
litellm_model_response: litellm.ModelResponse = (
|
|
instance_of_vertex_llm._transform_response(
|
|
model=model,
|
|
messages=[
|
|
{"role": "user", "content": "no-message-pass-through-endpoint"}
|
|
],
|
|
response=httpx_response,
|
|
model_response=litellm.ModelResponse(),
|
|
logging_obj=logging_obj,
|
|
optional_params={},
|
|
litellm_params={},
|
|
api_key="",
|
|
data={},
|
|
print_verbose=litellm.print_verbose,
|
|
encoding=None,
|
|
)
|
|
)
|
|
logging_obj.model = litellm_model_response.model or model
|
|
logging_obj.model_call_details["model"] = logging_obj.model
|
|
|
|
await logging_obj.async_success_handler(
|
|
result=litellm_model_response,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
cache_hit=cache_hit,
|
|
**kwargs,
|
|
)
|
|
elif "predict" in url_route:
|
|
from litellm.llms.vertex_ai_and_google_ai_studio.image_generation.image_generation_handler import (
|
|
VertexImageGeneration,
|
|
)
|
|
from litellm.types.utils import PassthroughCallTypes
|
|
|
|
vertex_image_generation_class = VertexImageGeneration()
|
|
|
|
model = self.extract_model_from_url(url_route)
|
|
_json_response = httpx_response.json()
|
|
|
|
litellm_prediction_response: Union[
|
|
litellm.ModelResponse, litellm.EmbeddingResponse, litellm.ImageResponse
|
|
] = litellm.ModelResponse()
|
|
if vertex_image_generation_class.is_image_generation_response(
|
|
_json_response
|
|
):
|
|
litellm_prediction_response = (
|
|
vertex_image_generation_class.process_image_generation_response(
|
|
_json_response,
|
|
model_response=litellm.ImageResponse(),
|
|
model=model,
|
|
)
|
|
)
|
|
|
|
logging_obj.call_type = (
|
|
PassthroughCallTypes.passthrough_image_generation.value
|
|
)
|
|
else:
|
|
litellm_prediction_response = litellm.vertexAITextEmbeddingConfig.transform_vertex_response_to_openai(
|
|
response=_json_response,
|
|
model=model,
|
|
model_response=litellm.EmbeddingResponse(),
|
|
)
|
|
if isinstance(litellm_prediction_response, litellm.EmbeddingResponse):
|
|
litellm_prediction_response.model = model
|
|
|
|
logging_obj.model = model
|
|
logging_obj.model_call_details["model"] = logging_obj.model
|
|
|
|
await logging_obj.async_success_handler(
|
|
result=litellm_prediction_response,
|
|
start_time=start_time,
|
|
end_time=end_time,
|
|
cache_hit=cache_hit,
|
|
**kwargs,
|
|
)
|