litellm-mirror/litellm/tests/test_custom_logger.py
2023-10-24 17:40:59 -07:00

90 lines
2.2 KiB
Python

### What this tests ####
import sys
import os
sys.path.insert(0, os.path.abspath('../..'))
from litellm import completion, embedding
import litellm
def custom_callback(
kwargs,
completion_response,
start_time,
end_time,
):
print(
"in custom callback func"
)
print("kwargs", kwargs)
print(completion_response)
print(start_time)
print(end_time)
def send_slack_alert(
kwargs,
completion_response,
start_time,
end_time,
):
print(
"in custom slack callback func"
)
import requests
import json
# Define the Slack webhook URL
slack_webhook_url = os.environ['SLACK_WEBHOOK_URL'] # "https://hooks.slack.com/services/<>/<>/<>"
# Define the text payload, send data available in litellm custom_callbacks
text_payload = f"""LiteLLM Logging: kwargs: {str(kwargs)}\n\n, response: {str(completion_response)}\n\n, start time{str(start_time)} end time: {str(end_time)}
"""
payload = {
"text": text_payload
}
# Set the headers
headers = {
"Content-type": "application/json"
}
# Make the POST request
response = requests.post(slack_webhook_url, json=payload, headers=headers)
# Check the response status
if response.status_code == 200:
print("Message sent successfully to Slack!")
else:
print(f"Failed to send message to Slack. Status code: {response.status_code}")
print(response.json())
def get_transformed_inputs(
kwargs,
):
params_to_model = kwargs["additional_args"]["complete_input_dict"]
print("params to model", params_to_model)
litellm.success_callback = [custom_callback, send_slack_alert]
litellm.failure_callback = [send_slack_alert]
litellm.set_verbose = True
litellm.input_callback = [get_transformed_inputs]
def test_chat_openai():
try:
response = completion(model="gpt-2",
messages=[{
"role": "user",
"content": "Hi 👋 - i'm openai"
}])
print(response)
except Exception as e:
print(e)
pass
test_chat_openai()