litellm-mirror/litellm/llms/palm.py
2023-10-05 22:09:38 -07:00

159 lines
5.6 KiB
Python

import os, types
import json
from enum import Enum
import time
from typing import Callable, Optional
from litellm.utils import ModelResponse, get_secret
import litellm
import sys
class PalmError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message = message
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class PalmConfig():
"""
Reference: https://developers.generativeai.google/api/python/google/generativeai/chat
The class `PalmConfig` provides configuration for the Palm's API interface. Here are the parameters:
- `context` (string): Text that should be provided to the model first, to ground the response. This could be a prompt to guide the model's responses.
- `examples` (list): Examples of what the model should generate. They are treated identically to conversation messages except that they take precedence over the history in messages if the total input size exceeds the model's input_token_limit.
- `temperature` (float): Controls the randomness of the output. Must be positive. Higher values produce a more random and varied response. A temperature of zero will be deterministic.
- `candidate_count` (int): Maximum number of generated response messages to return. This value must be between [1, 8], inclusive. Only unique candidates are returned.
- `top_k` (int): The API uses combined nucleus and top-k sampling. `top_k` sets the maximum number of tokens to sample from on each step.
- `top_p` (float): The API uses combined nucleus and top-k sampling. `top_p` configures the nucleus sampling. It sets the maximum cumulative probability of tokens to sample from.
- `maxOutputTokens` (int): Sets the maximum number of tokens to be returned in the output
"""
context: Optional[str]=None
examples: Optional[list]=None
temperature: Optional[float]=None
candidate_count: Optional[int]=None
top_k: Optional[int]=None
top_p: Optional[float]=None
maxOutputTokens: Optional[int]=None
def __init__(self,
context: Optional[str]=None,
examples: Optional[list]=None,
temperature: Optional[float]=None,
candidate_count: Optional[int]=None,
top_k: Optional[int]=None,
top_p: Optional[float]=None,
maxOutputTokens: Optional[int]=None) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != 'self' and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {k: v for k, v in cls.__dict__.items()
if not k.startswith('__')
and not isinstance(v, (types.FunctionType, types.BuiltinFunctionType, classmethod, staticmethod))
and v is not None}
def completion(
model: str,
messages: list,
model_response: ModelResponse,
print_verbose: Callable,
api_key,
encoding,
logging_obj,
optional_params=None,
litellm_params=None,
logger_fn=None,
):
try:
import google.generativeai as palm
except:
raise Exception("Importing google.generativeai failed, please run 'pip install -q google-generativeai")
palm.configure(api_key=api_key)
model = model
## Load Config
config = litellm.PalmConfig.get_config()
for k, v in config.items():
if k not in optional_params: # completion(top_k=3) > palm_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
prompt = ""
for message in messages:
if "role" in message:
if message["role"] == "user":
prompt += (
f"{message['content']}"
)
else:
prompt += (
f"{message['content']}"
)
else:
prompt += f"{message['content']}"
## LOGGING
logging_obj.pre_call(
input=prompt,
api_key="",
additional_args={"complete_input_dict": {}},
)
## COMPLETION CALL
response = palm.chat(messages=prompt)
## LOGGING
logging_obj.post_call(
input=prompt,
api_key="",
original_response=response,
additional_args={"complete_input_dict": {}},
)
print_verbose(f"raw model_response: {response}")
## RESPONSE OBJECT
completion_response = response.last
if "error" in completion_response:
raise PalmError(
message=completion_response["error"],
status_code=response.status_code,
)
else:
try:
model_response["choices"][0]["message"]["content"] = completion_response
except:
raise PalmError(message=json.dumps(completion_response), status_code=response.status_code)
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
prompt_tokens = len(
encoding.encode(prompt)
)
completion_tokens = len(
encoding.encode(model_response["choices"][0]["message"]["content"])
)
model_response["created"] = time.time()
model_response["model"] = "palm/" + model
model_response["usage"] = {
"prompt_tokens": prompt_tokens,
"completion_tokens": completion_tokens,
"total_tokens": prompt_tokens + completion_tokens,
}
return model_response
def embedding():
# logic for parsing in - calling - parsing out model embedding calls
pass