mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 19:24:27 +00:00
All checks were successful
Read Version from pyproject.toml / read-version (push) Successful in 35s
* build(model_prices_and_context_window.json): add gemini-1.5-flash context caching * fix(context_caching/transformation.py): just use last identified cache point Fixes https://github.com/BerriAI/litellm/issues/6738 * fix(context_caching/transformation.py): pick first contiguous block - handles system message error from google Fixes https://github.com/BerriAI/litellm/issues/6738 * fix(vertex_ai/gemini/): track context caching tokens * refactor(gemini/): place transformation.py inside `chat/` folder make it easy for user to know we support the equivalent endpoint * fix: fix import * refactor(vertex_ai/): move vertex_ai cost calc inside vertex_ai/ folder make it easier to see cost calculation logic * fix: fix linting errors * fix: fix circular import * feat(gemini/cost_calculator.py): support gemini context caching cost calculation generifies anthropic's cost calculation function and uses it across anthropic + gemini * build(model_prices_and_context_window.json): add cost tracking for gemini-1.5-flash-002 w/ context caching Closes https://github.com/BerriAI/litellm/issues/6891 * docs(gemini.md): add gemini context caching architecture diagram make it easier for user to understand how context caching works * docs(gemini.md): link to relevant gemini context caching code * docs(gemini/context_caching): add readme in github, make it easy for dev to know context caching is supported + where to go for code * fix(llm_cost_calc/utils.py): handle gemini 128k token diff cost calc scenario * fix(deepseek/cost_calculator.py): support deepseek context caching cost calculation * test: fix test |
||
---|---|---|
.. | ||
audio_utils | ||
llm_cost_calc | ||
llm_response_utils | ||
prompt_templates | ||
tokenizers | ||
asyncify.py | ||
core_helpers.py | ||
default_encoding.py | ||
duration_parser.py | ||
exception_mapping_utils.py | ||
get_llm_provider_logic.py | ||
get_supported_openai_params.py | ||
json_validation_rule.py | ||
litellm_logging.py | ||
llm_request_utils.py | ||
logging_utils.py | ||
mock_functions.py | ||
README.md | ||
realtime_streaming.py | ||
redact_messages.py | ||
response_header_helpers.py | ||
rules.py | ||
streaming_chunk_builder_utils.py | ||
streaming_handler.py | ||
token_counter.py |
Folder Contents
This folder contains general-purpose utilities that are used in multiple places in the codebase.
Core files:
streaming_handler.py
: The core streaming logic + streaming related helper utilscore_helpers.py
: code used intypes/
- e.g.map_finish_reason
.exception_mapping_utils.py
: utils for mapping exceptions to openai-compatible error types.default_encoding.py
: code for loading the default encoding (tiktoken)get_llm_provider_logic.py
: code for inferring the LLM provider from a given model name.duration_parser.py
: code for parsing durations - e.g. "1d", "1mo", "10s"