litellm-mirror/litellm/llms/anthropic.py
2024-07-10 22:14:23 -07:00

1120 lines
42 KiB
Python

import copy
import json
import os
import time
import types
from enum import Enum
from functools import partial
from typing import Callable, List, Optional, Union
import httpx # type: ignore
import requests # type: ignore
import litellm
import litellm.litellm_core_utils
from litellm import verbose_logger
from litellm.litellm_core_utils.core_helpers import map_finish_reason
from litellm.llms.custom_httpx.http_handler import (
AsyncHTTPHandler,
_get_async_httpx_client,
_get_httpx_client,
)
from litellm.types.llms.anthropic import (
AnthopicMessagesAssistantMessageParam,
AnthropicFinishReason,
AnthropicMessagesRequest,
AnthropicMessagesTool,
AnthropicMessagesToolChoice,
AnthropicMessagesUserMessageParam,
AnthropicResponse,
AnthropicResponseContentBlockText,
AnthropicResponseContentBlockToolUse,
AnthropicResponseUsageBlock,
ContentBlockDelta,
ContentBlockStart,
MessageBlockDelta,
MessageStartBlock,
)
from litellm.types.llms.openai import (
AllMessageValues,
ChatCompletionAssistantMessage,
ChatCompletionAssistantToolCall,
ChatCompletionImageObject,
ChatCompletionImageUrlObject,
ChatCompletionRequest,
ChatCompletionResponseMessage,
ChatCompletionSystemMessage,
ChatCompletionTextObject,
ChatCompletionToolCallChunk,
ChatCompletionToolCallFunctionChunk,
ChatCompletionToolChoiceFunctionParam,
ChatCompletionToolChoiceObjectParam,
ChatCompletionToolChoiceValues,
ChatCompletionToolMessage,
ChatCompletionToolParam,
ChatCompletionToolParamFunctionChunk,
ChatCompletionUsageBlock,
ChatCompletionUserMessage,
)
from litellm.types.utils import Choices, GenericStreamingChunk
from litellm.utils import CustomStreamWrapper, ModelResponse, Usage
from .base import BaseLLM
from .prompt_templates.factory import custom_prompt, prompt_factory
class AnthropicConstants(Enum):
HUMAN_PROMPT = "\n\nHuman: "
AI_PROMPT = "\n\nAssistant: "
# constants from https://github.com/anthropics/anthropic-sdk-python/blob/main/src/anthropic/_constants.py
class AnthropicError(Exception):
def __init__(self, status_code, message):
self.status_code = status_code
self.message: str = message
self.request = httpx.Request(
method="POST", url="https://api.anthropic.com/v1/messages"
)
self.response = httpx.Response(status_code=status_code, request=self.request)
super().__init__(
self.message
) # Call the base class constructor with the parameters it needs
class AnthropicConfig:
"""
Reference: https://docs.anthropic.com/claude/reference/messages_post
to pass metadata to anthropic, it's {"user_id": "any-relevant-information"}
"""
max_tokens: Optional[int] = (
4096 # anthropic requires a default value (Opus, Sonnet, and Haiku have the same default)
)
stop_sequences: Optional[list] = None
temperature: Optional[int] = None
top_p: Optional[int] = None
top_k: Optional[int] = None
metadata: Optional[dict] = None
system: Optional[str] = None
def __init__(
self,
max_tokens: Optional[
int
] = 4096, # You can pass in a value yourself or use the default value 4096
stop_sequences: Optional[list] = None,
temperature: Optional[int] = None,
top_p: Optional[int] = None,
top_k: Optional[int] = None,
metadata: Optional[dict] = None,
system: Optional[str] = None,
) -> None:
locals_ = locals()
for key, value in locals_.items():
if key != "self" and value is not None:
setattr(self.__class__, key, value)
@classmethod
def get_config(cls):
return {
k: v
for k, v in cls.__dict__.items()
if not k.startswith("__")
and not isinstance(
v,
(
types.FunctionType,
types.BuiltinFunctionType,
classmethod,
staticmethod,
),
)
and v is not None
}
def get_supported_openai_params(self):
return [
"stream",
"stop",
"temperature",
"top_p",
"max_tokens",
"tools",
"tool_choice",
"extra_headers",
]
def map_openai_params(self, non_default_params: dict, optional_params: dict):
for param, value in non_default_params.items():
if param == "max_tokens":
optional_params["max_tokens"] = value
if param == "tools":
optional_params["tools"] = value
if param == "tool_choice":
_tool_choice: Optional[AnthropicMessagesToolChoice] = None
if value == "auto":
_tool_choice = {"type": "auto"}
elif value == "required":
_tool_choice = {"type": "any"}
elif isinstance(value, dict):
_tool_choice = {"type": "tool", "name": value["function"]["name"]}
if _tool_choice is not None:
optional_params["tool_choice"] = _tool_choice
if param == "stream" and value == True:
optional_params["stream"] = value
if param == "stop":
if isinstance(value, str):
if (
value == "\n"
) and litellm.drop_params == True: # anthropic doesn't allow whitespace characters as stop-sequences
continue
value = [value]
elif isinstance(value, list):
new_v = []
for v in value:
if (
v == "\n"
) and litellm.drop_params == True: # anthropic doesn't allow whitespace characters as stop-sequences
continue
new_v.append(v)
if len(new_v) > 0:
value = new_v
else:
continue
optional_params["stop_sequences"] = value
if param == "temperature":
optional_params["temperature"] = value
if param == "top_p":
optional_params["top_p"] = value
return optional_params
### FOR [BETA] `/v1/messages` endpoint support
def translatable_anthropic_params(self) -> List:
"""
Which anthropic params, we need to translate to the openai format.
"""
return ["messages", "metadata", "system", "tool_choice", "tools"]
def translate_anthropic_messages_to_openai(
self,
messages: List[
Union[
AnthropicMessagesUserMessageParam,
AnthopicMessagesAssistantMessageParam,
]
],
) -> List:
new_messages: List[AllMessageValues] = []
for m in messages:
user_message: Optional[ChatCompletionUserMessage] = None
tool_message_list: List[ChatCompletionToolMessage] = []
## USER MESSAGE ##
if m["role"] == "user":
## translate user message
if isinstance(m["content"], str):
user_message = ChatCompletionUserMessage(
role="user", content=m["content"]
)
elif isinstance(m["content"], list):
new_user_content_list: List[
Union[ChatCompletionTextObject, ChatCompletionImageObject]
] = []
for content in m["content"]:
if content["type"] == "text":
text_obj = ChatCompletionTextObject(
type="text", text=content["text"]
)
new_user_content_list.append(text_obj)
elif content["type"] == "image":
image_url = ChatCompletionImageUrlObject(
url=f"data:{content['type']};base64,{content['source']}"
)
image_obj = ChatCompletionImageObject(
type="image_url", image_url=image_url
)
new_user_content_list.append(image_obj)
elif content["type"] == "tool_result":
if "content" not in content:
tool_result = ChatCompletionToolMessage(
role="tool",
tool_call_id=content["tool_use_id"],
content="",
)
tool_message_list.append(tool_result)
elif isinstance(content["content"], str):
tool_result = ChatCompletionToolMessage(
role="tool",
tool_call_id=content["tool_use_id"],
content=content["content"],
)
tool_message_list.append(tool_result)
elif isinstance(content["content"], list):
for c in content["content"]:
if c["type"] == "text":
tool_result = ChatCompletionToolMessage(
role="tool",
tool_call_id=content["tool_use_id"],
content=c["text"],
)
tool_message_list.append(tool_result)
elif c["type"] == "image":
image_str = (
f"data:{c['type']};base64,{c['source']}"
)
tool_result = ChatCompletionToolMessage(
role="tool",
tool_call_id=content["tool_use_id"],
content=image_str,
)
tool_message_list.append(tool_result)
if user_message is not None:
new_messages.append(user_message)
if len(tool_message_list) > 0:
new_messages.extend(tool_message_list)
## ASSISTANT MESSAGE ##
assistant_message_str: Optional[str] = None
tool_calls: List[ChatCompletionAssistantToolCall] = []
if m["role"] == "assistant":
if isinstance(m["content"], str):
assistant_message_str = m["content"]
elif isinstance(m["content"], list):
for content in m["content"]:
if content["type"] == "text":
if assistant_message_str is None:
assistant_message_str = content["text"]
else:
assistant_message_str += content["text"]
elif content["type"] == "tool_use":
function_chunk = ChatCompletionToolCallFunctionChunk(
name=content["name"],
arguments=json.dumps(content["input"]),
)
tool_calls.append(
ChatCompletionAssistantToolCall(
id=content["id"],
type="function",
function=function_chunk,
)
)
if assistant_message_str is not None or len(tool_calls) > 0:
assistant_message = ChatCompletionAssistantMessage(
role="assistant",
content=assistant_message_str,
)
if len(tool_calls) > 0:
assistant_message["tool_calls"] = tool_calls
new_messages.append(assistant_message)
return new_messages
def translate_anthropic_tool_choice_to_openai(
self, tool_choice: AnthropicMessagesToolChoice
) -> ChatCompletionToolChoiceValues:
if tool_choice["type"] == "any":
return "required"
elif tool_choice["type"] == "auto":
return "auto"
elif tool_choice["type"] == "tool":
tc_function_param = ChatCompletionToolChoiceFunctionParam(
name=tool_choice.get("name", "")
)
return ChatCompletionToolChoiceObjectParam(
type="function", function=tc_function_param
)
else:
raise ValueError(
"Incompatible tool choice param submitted - {}".format(tool_choice)
)
def translate_anthropic_tools_to_openai(
self, tools: List[AnthropicMessagesTool]
) -> List[ChatCompletionToolParam]:
new_tools: List[ChatCompletionToolParam] = []
for tool in tools:
function_chunk = ChatCompletionToolParamFunctionChunk(
name=tool["name"],
parameters=tool["input_schema"],
)
if "description" in tool:
function_chunk["description"] = tool["description"]
new_tools.append(
ChatCompletionToolParam(type="function", function=function_chunk)
)
return new_tools
def translate_anthropic_to_openai(
self, anthropic_message_request: AnthropicMessagesRequest
) -> ChatCompletionRequest:
"""
This is used by the beta Anthropic Adapter, for translating anthropic `/v1/messages` requests to the openai format.
"""
new_messages: List[AllMessageValues] = []
## CONVERT ANTHROPIC MESSAGES TO OPENAI
new_messages = self.translate_anthropic_messages_to_openai(
messages=anthropic_message_request["messages"]
)
## ADD SYSTEM MESSAGE TO MESSAGES
if "system" in anthropic_message_request:
new_messages.insert(
0,
ChatCompletionSystemMessage(
role="system", content=anthropic_message_request["system"]
),
)
new_kwargs: ChatCompletionRequest = {
"model": anthropic_message_request["model"],
"messages": new_messages,
}
## CONVERT METADATA (user_id)
if "metadata" in anthropic_message_request:
if "user_id" in anthropic_message_request["metadata"]:
new_kwargs["user"] = anthropic_message_request["metadata"]["user_id"]
## CONVERT TOOL CHOICE
if "tool_choice" in anthropic_message_request:
new_kwargs["tool_choice"] = self.translate_anthropic_tool_choice_to_openai(
tool_choice=anthropic_message_request["tool_choice"]
)
## CONVERT TOOLS
if "tools" in anthropic_message_request:
new_kwargs["tools"] = self.translate_anthropic_tools_to_openai(
tools=anthropic_message_request["tools"]
)
translatable_params = self.translatable_anthropic_params()
for k, v in anthropic_message_request.items():
if k not in translatable_params: # pass remaining params as is
new_kwargs[k] = v # type: ignore
return new_kwargs
def _translate_openai_content_to_anthropic(
self, choices: List[Choices]
) -> List[
Union[AnthropicResponseContentBlockText, AnthropicResponseContentBlockToolUse]
]:
new_content: List[
Union[
AnthropicResponseContentBlockText, AnthropicResponseContentBlockToolUse
]
] = []
for choice in choices:
if (
choice.message.tool_calls is not None
and len(choice.message.tool_calls) > 0
):
for tool_call in choice.message.tool_calls:
new_content.append(
AnthropicResponseContentBlockToolUse(
type="tool_use",
id=tool_call.id,
name=tool_call.function.name or "",
input=json.loads(tool_call.function.arguments),
)
)
elif choice.message.content is not None:
new_content.append(
AnthropicResponseContentBlockText(
type="text", text=choice.message.content
)
)
return new_content
def _translate_openai_finish_reason_to_anthropic(
self, openai_finish_reason: str
) -> AnthropicFinishReason:
if openai_finish_reason == "stop":
return "end_turn"
elif openai_finish_reason == "length":
return "max_tokens"
elif openai_finish_reason == "tool_calls":
return "tool_use"
return "end_turn"
def translate_openai_response_to_anthropic(
self, response: litellm.ModelResponse
) -> AnthropicResponse:
## translate content block
anthropic_content = self._translate_openai_content_to_anthropic(choices=response.choices) # type: ignore
## extract finish reason
anthropic_finish_reason = self._translate_openai_finish_reason_to_anthropic(
openai_finish_reason=response.choices[0].finish_reason # type: ignore
)
# extract usage
usage: litellm.Usage = getattr(response, "usage")
anthropic_usage = AnthropicResponseUsageBlock(
input_tokens=usage.prompt_tokens, output_tokens=usage.completion_tokens
)
translated_obj = AnthropicResponse(
id=response.id,
type="message",
role="assistant",
model=response.model or "unknown-model",
stop_sequence=None,
usage=anthropic_usage,
content=anthropic_content,
stop_reason=anthropic_finish_reason,
)
return translated_obj
# makes headers for API call
def validate_environment(api_key, user_headers):
if api_key is None:
raise ValueError(
"Missing Anthropic API Key - A call is being made to anthropic but no key is set either in the environment variables or via params"
)
headers = {
"accept": "application/json",
"anthropic-version": "2023-06-01",
"content-type": "application/json",
"x-api-key": api_key,
}
if user_headers is not None and isinstance(user_headers, dict):
headers = {**headers, **user_headers}
return headers
async def make_call(
client: Optional[AsyncHTTPHandler],
api_base: str,
headers: dict,
data: str,
model: str,
messages: list,
logging_obj,
):
if client is None:
client = _get_async_httpx_client() # Create a new client if none provided
try:
response = await client.post(api_base, headers=headers, data=data, stream=True)
except httpx.HTTPStatusError as e:
raise AnthropicError(
status_code=e.response.status_code, message=await e.response.aread()
)
except Exception as e:
raise AnthropicError(status_code=500, message=str(e))
if response.status_code != 200:
raise AnthropicError(
status_code=response.status_code, message=await response.aread()
)
completion_stream = ModelResponseIterator(
streaming_response=response.aiter_lines(), sync_stream=False
)
# LOGGING
logging_obj.post_call(
input=messages,
api_key="",
original_response=completion_stream, # Pass the completion stream for logging
additional_args={"complete_input_dict": data},
)
return completion_stream
class AnthropicChatCompletion(BaseLLM):
def __init__(self) -> None:
super().__init__()
def process_response(
self,
model: str,
response: Union[requests.Response, httpx.Response],
model_response: ModelResponse,
stream: bool,
logging_obj: litellm.litellm_core_utils.litellm_logging.Logging,
optional_params: dict,
api_key: str,
data: Union[dict, str],
messages: List,
print_verbose,
encoding,
) -> ModelResponse:
## LOGGING
logging_obj.post_call(
input=messages,
api_key=api_key,
original_response=response.text,
additional_args={"complete_input_dict": data},
)
print_verbose(f"raw model_response: {response.text}")
## RESPONSE OBJECT
try:
completion_response = response.json()
except:
raise AnthropicError(
message=response.text, status_code=response.status_code
)
if "error" in completion_response:
raise AnthropicError(
message=str(completion_response["error"]),
status_code=response.status_code,
)
else:
text_content = ""
tool_calls = []
for content in completion_response["content"]:
if content["type"] == "text":
text_content += content["text"]
## TOOL CALLING
elif content["type"] == "tool_use":
tool_calls.append(
{
"id": content["id"],
"type": "function",
"function": {
"name": content["name"],
"arguments": json.dumps(content["input"]),
},
}
)
_message = litellm.Message(
tool_calls=tool_calls,
content=text_content or None,
)
model_response.choices[0].message = _message # type: ignore
model_response._hidden_params["original_response"] = completion_response[
"content"
] # allow user to access raw anthropic tool calling response
model_response.choices[0].finish_reason = map_finish_reason(
completion_response["stop_reason"]
)
## CALCULATING USAGE
prompt_tokens = completion_response["usage"]["input_tokens"]
completion_tokens = completion_response["usage"]["output_tokens"]
total_tokens = prompt_tokens + completion_tokens
model_response["created"] = int(time.time())
model_response["model"] = model
usage = Usage(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
)
setattr(model_response, "usage", usage) # type: ignore
return model_response
async def acompletion_stream_function(
self,
model: str,
messages: list,
api_base: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
stream,
_is_function_call,
data: dict,
optional_params=None,
litellm_params=None,
logger_fn=None,
headers={},
):
data["stream"] = True
# async_handler = AsyncHTTPHandler(
# timeout=httpx.Timeout(timeout=600.0, connect=20.0)
# )
# response = await async_handler.post(
# api_base, headers=headers, json=data, stream=True
# )
# if response.status_code != 200:
# raise AnthropicError(
# status_code=response.status_code, message=response.text
# )
# completion_stream = response.aiter_lines()
streamwrapper = CustomStreamWrapper(
completion_stream=None,
make_call=partial(
make_call,
client=None,
api_base=api_base,
headers=headers,
data=json.dumps(data),
model=model,
messages=messages,
logging_obj=logging_obj,
),
model=model,
custom_llm_provider="anthropic",
logging_obj=logging_obj,
)
return streamwrapper
async def acompletion_function(
self,
model: str,
messages: list,
api_base: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
stream,
_is_function_call,
data: dict,
optional_params: dict,
litellm_params=None,
logger_fn=None,
headers={},
) -> Union[ModelResponse, CustomStreamWrapper]:
async_handler = _get_async_httpx_client()
try:
response = await async_handler.post(api_base, headers=headers, json=data)
except Exception as e:
## LOGGING
logging_obj.post_call(
input=messages,
api_key=api_key,
original_response=str(e),
additional_args={"complete_input_dict": data},
)
raise e
return self.process_response(
model=model,
response=response,
model_response=model_response,
stream=stream,
logging_obj=logging_obj,
api_key=api_key,
data=data,
messages=messages,
print_verbose=print_verbose,
optional_params=optional_params,
encoding=encoding,
)
def completion(
self,
model: str,
messages: list,
api_base: str,
custom_prompt_dict: dict,
model_response: ModelResponse,
print_verbose: Callable,
encoding,
api_key,
logging_obj,
optional_params: dict,
acompletion=None,
litellm_params=None,
logger_fn=None,
headers={},
):
headers = validate_environment(api_key, headers)
_is_function_call = False
messages = copy.deepcopy(messages)
optional_params = copy.deepcopy(optional_params)
if model in custom_prompt_dict:
# check if the model has a registered custom prompt
model_prompt_details = custom_prompt_dict[model]
prompt = custom_prompt(
role_dict=model_prompt_details["roles"],
initial_prompt_value=model_prompt_details["initial_prompt_value"],
final_prompt_value=model_prompt_details["final_prompt_value"],
messages=messages,
)
else:
# Separate system prompt from rest of message
system_prompt_indices = []
system_prompt = ""
for idx, message in enumerate(messages):
if message["role"] == "system":
system_prompt += message["content"]
system_prompt_indices.append(idx)
if len(system_prompt_indices) > 0:
for idx in reversed(system_prompt_indices):
messages.pop(idx)
if len(system_prompt) > 0:
optional_params["system"] = system_prompt
# Format rest of message according to anthropic guidelines
try:
messages = prompt_factory(
model=model, messages=messages, custom_llm_provider="anthropic"
)
except Exception as e:
raise AnthropicError(status_code=400, message=str(e))
## Load Config
config = litellm.AnthropicConfig.get_config()
for k, v in config.items():
if (
k not in optional_params
): # completion(top_k=3) > anthropic_config(top_k=3) <- allows for dynamic variables to be passed in
optional_params[k] = v
## Handle Tool Calling
if "tools" in optional_params:
_is_function_call = True
if "anthropic-beta" not in headers:
# default to v1 of "anthropic-beta"
headers["anthropic-beta"] = "tools-2024-05-16"
anthropic_tools = []
for tool in optional_params["tools"]:
new_tool = tool["function"]
new_tool["input_schema"] = new_tool.pop("parameters") # rename key
anthropic_tools.append(new_tool)
optional_params["tools"] = anthropic_tools
stream = optional_params.pop("stream", None)
is_vertex_request: bool = optional_params.pop("is_vertex_request", False)
data = {
"messages": messages,
**optional_params,
}
if is_vertex_request is False:
data["model"] = model
## LOGGING
logging_obj.pre_call(
input=messages,
api_key=api_key,
additional_args={
"complete_input_dict": data,
"api_base": api_base,
"headers": headers,
},
)
print_verbose(f"_is_function_call: {_is_function_call}")
if acompletion == True:
if (
stream is True
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
print_verbose("makes async anthropic streaming POST request")
data["stream"] = stream
return self.acompletion_stream_function(
model=model,
messages=messages,
data=data,
api_base=api_base,
custom_prompt_dict=custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
encoding=encoding,
api_key=api_key,
logging_obj=logging_obj,
optional_params=optional_params,
stream=stream,
_is_function_call=_is_function_call,
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=headers,
)
else:
return self.acompletion_function(
model=model,
messages=messages,
data=data,
api_base=api_base,
custom_prompt_dict=custom_prompt_dict,
model_response=model_response,
print_verbose=print_verbose,
encoding=encoding,
api_key=api_key,
logging_obj=logging_obj,
optional_params=optional_params,
stream=stream,
_is_function_call=_is_function_call,
litellm_params=litellm_params,
logger_fn=logger_fn,
headers=headers,
)
else:
## COMPLETION CALL
if (
stream is True
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
print_verbose("makes anthropic streaming POST request")
data["stream"] = stream
response = requests.post(
api_base,
headers=headers,
data=json.dumps(data),
stream=stream,
)
if response.status_code != 200:
raise AnthropicError(
status_code=response.status_code, message=response.text
)
completion_stream = ModelResponseIterator(
streaming_response=response.iter_lines(), sync_stream=True
)
streaming_response = CustomStreamWrapper(
completion_stream=completion_stream,
model=model,
custom_llm_provider="anthropic",
logging_obj=logging_obj,
)
return streaming_response
else:
response = requests.post(
api_base, headers=headers, data=json.dumps(data)
)
if response.status_code != 200:
raise AnthropicError(
status_code=response.status_code, message=response.text
)
return self.process_response(
model=model,
response=response,
model_response=model_response,
stream=stream,
logging_obj=logging_obj,
api_key=api_key,
data=data,
messages=messages,
print_verbose=print_verbose,
optional_params=optional_params,
encoding=encoding,
)
def embedding(self):
# logic for parsing in - calling - parsing out model embedding calls
pass
class ModelResponseIterator:
def __init__(self, streaming_response, sync_stream: bool):
self.streaming_response = streaming_response
self.response_iterator = self.streaming_response
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
try:
verbose_logger.debug(f"\n\nRaw chunk:\n{chunk}\n")
type_chunk = chunk.get("type", "") or ""
text = ""
tool_use: Optional[ChatCompletionToolCallChunk] = None
is_finished = False
finish_reason = ""
usage: Optional[ChatCompletionUsageBlock] = None
index = int(chunk.get("index", 0))
if type_chunk == "content_block_delta":
"""
Anthropic content chunk
chunk = {'type': 'content_block_delta', 'index': 0, 'delta': {'type': 'text_delta', 'text': 'Hello'}}
"""
content_block = ContentBlockDelta(**chunk) # type: ignore
if "text" in content_block["delta"]:
text = content_block["delta"]["text"]
elif "partial_json" in content_block["delta"]:
tool_use = {
"id": None,
"type": "function",
"function": {
"name": None,
"arguments": content_block["delta"]["partial_json"],
},
"index": content_block["index"],
}
elif type_chunk == "content_block_start":
"""
event: content_block_start
data: {"type":"content_block_start","index":1,"content_block":{"type":"tool_use","id":"toolu_01T1x1fJ34qAmk2tNTrN7Up6","name":"get_weather","input":{}}}
"""
content_block_start = ContentBlockStart(**chunk) # type: ignore
if content_block_start["content_block"]["type"] == "text":
text = content_block_start["content_block"]["text"]
elif content_block_start["content_block"]["type"] == "tool_use":
tool_use = {
"id": content_block_start["content_block"]["id"],
"type": "function",
"function": {
"name": content_block_start["content_block"]["name"],
"arguments": "",
},
"index": content_block_start["index"],
}
elif type_chunk == "message_delta":
"""
Anthropic
chunk = {'type': 'message_delta', 'delta': {'stop_reason': 'max_tokens', 'stop_sequence': None}, 'usage': {'output_tokens': 10}}
"""
# TODO - get usage from this chunk, set in response
message_delta = MessageBlockDelta(**chunk) # type: ignore
finish_reason = map_finish_reason(
finish_reason=message_delta["delta"].get("stop_reason", "stop")
or "stop"
)
usage = ChatCompletionUsageBlock(
prompt_tokens=message_delta["usage"].get("input_tokens", 0),
completion_tokens=message_delta["usage"].get("output_tokens", 0),
total_tokens=message_delta["usage"].get("input_tokens", 0)
+ message_delta["usage"].get("output_tokens", 0),
)
is_finished = True
elif type_chunk == "message_start":
"""
Anthropic
chunk = {
"type": "message_start",
"message": {
"id": "msg_vrtx_011PqREFEMzd3REdCoUFAmdG",
"type": "message",
"role": "assistant",
"model": "claude-3-sonnet-20240229",
"content": [],
"stop_reason": null,
"stop_sequence": null,
"usage": {
"input_tokens": 270,
"output_tokens": 1
}
}
}
"""
message_start_block = MessageStartBlock(**chunk) # type: ignore
usage = ChatCompletionUsageBlock(
prompt_tokens=message_start_block["message"]
.get("usage", {})
.get("input_tokens", 0),
completion_tokens=message_start_block["message"]
.get("usage", {})
.get("output_tokens", 0),
total_tokens=message_start_block["message"]
.get("usage", {})
.get("input_tokens", 0)
+ message_start_block["message"]
.get("usage", {})
.get("output_tokens", 0),
)
elif type_chunk == "error":
"""
{"type":"error","error":{"details":null,"type":"api_error","message":"Internal server error"} }
"""
_error_dict = chunk.get("error", {}) or {}
message = _error_dict.get("message", None) or str(chunk)
raise AnthropicError(
message=message,
status_code=500, # it looks like Anthropic API does not return a status code in the chunk error - default to 500
)
returned_chunk = GenericStreamingChunk(
text=text,
tool_use=tool_use,
is_finished=is_finished,
finish_reason=finish_reason,
usage=usage,
index=index,
)
return returned_chunk
except json.JSONDecodeError:
raise ValueError(f"Failed to decode JSON from chunk: {chunk}")
# Sync iterator
def __iter__(self):
return self
def __next__(self):
try:
chunk = self.response_iterator.__next__()
except StopIteration:
raise StopIteration
except ValueError as e:
raise RuntimeError(f"Error receiving chunk from stream: {e}")
try:
str_line = chunk
if isinstance(chunk, bytes): # Handle binary data
str_line = chunk.decode("utf-8") # Convert bytes to string
index = str_line.find("data:")
if index != -1:
str_line = str_line[index:]
if str_line.startswith("data:"):
data_json = json.loads(str_line[5:])
return self.chunk_parser(chunk=data_json)
else:
return GenericStreamingChunk(
text="",
is_finished=False,
finish_reason="",
usage=None,
index=0,
tool_use=None,
)
except StopIteration:
raise StopIteration
except ValueError as e:
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
# Async iterator
def __aiter__(self):
self.async_response_iterator = self.streaming_response.__aiter__()
return self
async def __anext__(self):
try:
chunk = await self.async_response_iterator.__anext__()
except StopAsyncIteration:
raise StopAsyncIteration
except ValueError as e:
raise RuntimeError(f"Error receiving chunk from stream: {e}")
try:
str_line = chunk
if isinstance(chunk, bytes): # Handle binary data
str_line = chunk.decode("utf-8") # Convert bytes to string
index = str_line.find("data:")
if index != -1:
str_line = str_line[index:]
if str_line.startswith("data:"):
data_json = json.loads(str_line[5:])
return self.chunk_parser(chunk=data_json)
else:
return GenericStreamingChunk(
text="",
is_finished=False,
finish_reason="",
usage=None,
index=0,
tool_use=None,
)
except StopAsyncIteration:
raise StopAsyncIteration
except ValueError as e:
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")