litellm-mirror/tests/llm_translation/base_embedding_unit_tests.py
Ishaan Jaff c7b288ce30 (fix) unable to pass input_type parameter to Voyage AI embedding mode (#7276)
* VoyageEmbeddingConfig

* fix voyage logic to get params

* add voyage embedding transformation

* add get_provider_embedding_config

* use BaseEmbeddingConfig

* voyage clean up

* use llm http handler for embedding transformations

* test_voyage_ai_embedding_extra_params

* add voyage async

* test_voyage_ai_embedding_extra_params

* add async for llm http handler

* update BaseLLMEmbeddingTest

* test_voyage_ai_embedding_extra_params

* fix linting

* fix get_provider_embedding_config

* fix anthropic text test

* update location of base/chat/transformation

* fix import path

* fix IBMWatsonXAIConfig
2024-12-17 19:23:49 -08:00

71 lines
2.1 KiB
Python

import asyncio
import httpx
import json
import pytest
import sys
from typing import Any, Dict, List
from unittest.mock import MagicMock, Mock, patch
import os
sys.path.insert(
0, os.path.abspath("../..")
) # Adds the parent directory to the system path
import litellm
from litellm.exceptions import BadRequestError
from litellm.llms.custom_httpx.http_handler import AsyncHTTPHandler, HTTPHandler
from litellm.utils import (
CustomStreamWrapper,
get_supported_openai_params,
get_optional_params,
get_optional_params_embeddings,
)
# test_example.py
from abc import ABC, abstractmethod
class BaseLLMEmbeddingTest(ABC):
"""
Abstract base test class that enforces a common test across all test classes.
"""
@abstractmethod
def get_base_embedding_call_args(self) -> dict:
"""Must return the base embedding call args"""
pass
@abstractmethod
def get_custom_llm_provider(self) -> litellm.LlmProviders:
"""Must return the custom llm provider"""
pass
@pytest.mark.asyncio()
@pytest.mark.parametrize("sync_mode", [True, False])
async def test_basic_embedding(self, sync_mode):
litellm.set_verbose = True
embedding_call_args = self.get_base_embedding_call_args()
if sync_mode is True:
response = litellm.embedding(
**embedding_call_args,
input=["hello", "world"],
)
print("embedding response: ", response)
else:
response = await litellm.aembedding(
**embedding_call_args,
input=["hello", "world"],
)
print("async embedding response: ", response)
from openai.types.create_embedding_response import CreateEmbeddingResponse
CreateEmbeddingResponse.model_validate(response.model_dump())
def test_embedding_optional_params_max_retries(self):
embedding_call_args = self.get_base_embedding_call_args()
optional_params = get_optional_params_embeddings(
**embedding_call_args, max_retries=20
)
assert optional_params["max_retries"] == 20