mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
* remove unused imports * fix AmazonConverseConfig * fix test * fix import * ruff check fixes * test fixes * fix testing * fix imports
764 lines
27 KiB
Python
764 lines
27 KiB
Python
"""
|
|
Calling + translation logic for anthropic's `/v1/messages` endpoint
|
|
"""
|
|
|
|
import copy
|
|
import json
|
|
from typing import Any, Callable, List, Optional, Tuple, Union
|
|
|
|
import httpx # type: ignore
|
|
|
|
import litellm
|
|
import litellm.litellm_core_utils
|
|
import litellm.types
|
|
import litellm.types.utils
|
|
from litellm import LlmProviders
|
|
from litellm.litellm_core_utils.core_helpers import map_finish_reason
|
|
from litellm.llms.custom_httpx.http_handler import (
|
|
AsyncHTTPHandler,
|
|
HTTPHandler,
|
|
get_async_httpx_client,
|
|
)
|
|
from litellm.types.llms.anthropic import (
|
|
AnthropicChatCompletionUsageBlock,
|
|
ContentBlockDelta,
|
|
ContentBlockStart,
|
|
ContentBlockStop,
|
|
MessageBlockDelta,
|
|
MessageStartBlock,
|
|
UsageDelta,
|
|
)
|
|
from litellm.types.llms.openai import (
|
|
ChatCompletionToolCallChunk,
|
|
ChatCompletionUsageBlock,
|
|
)
|
|
from litellm.types.utils import GenericStreamingChunk
|
|
from litellm.utils import CustomStreamWrapper, ModelResponse, ProviderConfigManager
|
|
|
|
from ...base import BaseLLM
|
|
from ..common_utils import AnthropicError, process_anthropic_headers
|
|
from .transformation import AnthropicConfig
|
|
|
|
|
|
async def make_call(
|
|
client: Optional[AsyncHTTPHandler],
|
|
api_base: str,
|
|
headers: dict,
|
|
data: str,
|
|
model: str,
|
|
messages: list,
|
|
logging_obj,
|
|
timeout: Optional[Union[float, httpx.Timeout]],
|
|
json_mode: bool,
|
|
) -> Tuple[Any, httpx.Headers]:
|
|
if client is None:
|
|
client = litellm.module_level_aclient
|
|
|
|
try:
|
|
response = await client.post(
|
|
api_base, headers=headers, data=data, stream=True, timeout=timeout
|
|
)
|
|
except httpx.HTTPStatusError as e:
|
|
error_headers = getattr(e, "headers", None)
|
|
error_response = getattr(e, "response", None)
|
|
if error_headers is None and error_response:
|
|
error_headers = getattr(error_response, "headers", None)
|
|
raise AnthropicError(
|
|
status_code=e.response.status_code,
|
|
message=await e.response.aread(),
|
|
headers=error_headers,
|
|
)
|
|
except Exception as e:
|
|
for exception in litellm.LITELLM_EXCEPTION_TYPES:
|
|
if isinstance(e, exception):
|
|
raise e
|
|
raise AnthropicError(status_code=500, message=str(e))
|
|
|
|
completion_stream = ModelResponseIterator(
|
|
streaming_response=response.aiter_lines(),
|
|
sync_stream=False,
|
|
json_mode=json_mode,
|
|
)
|
|
|
|
# LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response=completion_stream, # Pass the completion stream for logging
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
return completion_stream, response.headers
|
|
|
|
|
|
def make_sync_call(
|
|
client: Optional[HTTPHandler],
|
|
api_base: str,
|
|
headers: dict,
|
|
data: str,
|
|
model: str,
|
|
messages: list,
|
|
logging_obj,
|
|
timeout: Optional[Union[float, httpx.Timeout]],
|
|
json_mode: bool,
|
|
) -> Tuple[Any, httpx.Headers]:
|
|
if client is None:
|
|
client = litellm.module_level_client # re-use a module level client
|
|
|
|
try:
|
|
response = client.post(
|
|
api_base, headers=headers, data=data, stream=True, timeout=timeout
|
|
)
|
|
except httpx.HTTPStatusError as e:
|
|
error_headers = getattr(e, "headers", None)
|
|
error_response = getattr(e, "response", None)
|
|
if error_headers is None and error_response:
|
|
error_headers = getattr(error_response, "headers", None)
|
|
raise AnthropicError(
|
|
status_code=e.response.status_code,
|
|
message=e.response.read(),
|
|
headers=error_headers,
|
|
)
|
|
except Exception as e:
|
|
for exception in litellm.LITELLM_EXCEPTION_TYPES:
|
|
if isinstance(e, exception):
|
|
raise e
|
|
raise AnthropicError(status_code=500, message=str(e))
|
|
|
|
if response.status_code != 200:
|
|
response_headers = getattr(response, "headers", None)
|
|
raise AnthropicError(
|
|
status_code=response.status_code,
|
|
message=response.read(),
|
|
headers=response_headers,
|
|
)
|
|
|
|
completion_stream = ModelResponseIterator(
|
|
streaming_response=response.iter_lines(), sync_stream=True, json_mode=json_mode
|
|
)
|
|
|
|
# LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key="",
|
|
original_response="first stream response received",
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
|
|
return completion_stream, response.headers
|
|
|
|
|
|
class AnthropicChatCompletion(BaseLLM):
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
async def acompletion_stream_function(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
timeout: Union[float, httpx.Timeout],
|
|
client: Optional[AsyncHTTPHandler],
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
stream,
|
|
_is_function_call,
|
|
data: dict,
|
|
json_mode: bool,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
):
|
|
data["stream"] = True
|
|
|
|
completion_stream, headers = await make_call(
|
|
client=client,
|
|
api_base=api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
model=model,
|
|
messages=messages,
|
|
logging_obj=logging_obj,
|
|
timeout=timeout,
|
|
json_mode=json_mode,
|
|
)
|
|
streamwrapper = CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model=model,
|
|
custom_llm_provider="anthropic",
|
|
logging_obj=logging_obj,
|
|
_response_headers=process_anthropic_headers(headers),
|
|
)
|
|
return streamwrapper
|
|
|
|
async def acompletion_function(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
timeout: Union[float, httpx.Timeout],
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
stream,
|
|
_is_function_call,
|
|
data: dict,
|
|
optional_params: dict,
|
|
json_mode: bool,
|
|
litellm_params: dict,
|
|
logger_fn=None,
|
|
headers={},
|
|
client: Optional[AsyncHTTPHandler] = None,
|
|
) -> Union[ModelResponse, CustomStreamWrapper]:
|
|
async_handler = client or get_async_httpx_client(
|
|
llm_provider=litellm.LlmProviders.ANTHROPIC
|
|
)
|
|
|
|
try:
|
|
response = await async_handler.post(
|
|
api_base, headers=headers, json=data, timeout=timeout
|
|
)
|
|
except Exception as e:
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
original_response=str(e),
|
|
additional_args={"complete_input_dict": data},
|
|
)
|
|
status_code = getattr(e, "status_code", 500)
|
|
error_headers = getattr(e, "headers", None)
|
|
error_text = getattr(e, "text", str(e))
|
|
error_response = getattr(e, "response", None)
|
|
if error_headers is None and error_response:
|
|
error_headers = getattr(error_response, "headers", None)
|
|
if error_response and hasattr(error_response, "text"):
|
|
error_text = getattr(error_response, "text", error_text)
|
|
raise AnthropicError(
|
|
message=error_text,
|
|
status_code=status_code,
|
|
headers=error_headers,
|
|
)
|
|
|
|
return AnthropicConfig().transform_response(
|
|
model=model,
|
|
raw_response=response,
|
|
model_response=model_response,
|
|
logging_obj=logging_obj,
|
|
api_key=api_key,
|
|
request_data=data,
|
|
messages=messages,
|
|
optional_params=optional_params,
|
|
litellm_params=litellm_params,
|
|
encoding=encoding,
|
|
json_mode=json_mode,
|
|
)
|
|
|
|
def completion(
|
|
self,
|
|
model: str,
|
|
messages: list,
|
|
api_base: str,
|
|
custom_llm_provider: str,
|
|
custom_prompt_dict: dict,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
encoding,
|
|
api_key,
|
|
logging_obj,
|
|
optional_params: dict,
|
|
timeout: Union[float, httpx.Timeout],
|
|
litellm_params: dict,
|
|
acompletion=None,
|
|
logger_fn=None,
|
|
headers={},
|
|
client=None,
|
|
):
|
|
optional_params = copy.deepcopy(optional_params)
|
|
stream = optional_params.pop("stream", None)
|
|
json_mode: bool = optional_params.pop("json_mode", False)
|
|
is_vertex_request: bool = optional_params.pop("is_vertex_request", False)
|
|
_is_function_call = False
|
|
messages = copy.deepcopy(messages)
|
|
headers = AnthropicConfig().validate_environment(
|
|
api_key=api_key,
|
|
headers=headers,
|
|
model=model,
|
|
messages=messages,
|
|
optional_params={**optional_params, "is_vertex_request": is_vertex_request},
|
|
)
|
|
|
|
config = ProviderConfigManager.get_provider_chat_config(
|
|
model=model,
|
|
provider=LlmProviders(custom_llm_provider),
|
|
)
|
|
|
|
data = config.transform_request(
|
|
model=model,
|
|
messages=messages,
|
|
optional_params=optional_params,
|
|
litellm_params=litellm_params,
|
|
headers=headers,
|
|
)
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
additional_args={
|
|
"complete_input_dict": data,
|
|
"api_base": api_base,
|
|
"headers": headers,
|
|
},
|
|
)
|
|
print_verbose(f"_is_function_call: {_is_function_call}")
|
|
if acompletion is True:
|
|
if (
|
|
stream is True
|
|
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
|
print_verbose("makes async anthropic streaming POST request")
|
|
data["stream"] = stream
|
|
return self.acompletion_stream_function(
|
|
model=model,
|
|
messages=messages,
|
|
data=data,
|
|
api_base=api_base,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
model_response=model_response,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
api_key=api_key,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
stream=stream,
|
|
_is_function_call=_is_function_call,
|
|
json_mode=json_mode,
|
|
litellm_params=litellm_params,
|
|
logger_fn=logger_fn,
|
|
headers=headers,
|
|
timeout=timeout,
|
|
client=(
|
|
client
|
|
if client is not None and isinstance(client, AsyncHTTPHandler)
|
|
else None
|
|
),
|
|
)
|
|
else:
|
|
return self.acompletion_function(
|
|
model=model,
|
|
messages=messages,
|
|
data=data,
|
|
api_base=api_base,
|
|
custom_prompt_dict=custom_prompt_dict,
|
|
model_response=model_response,
|
|
print_verbose=print_verbose,
|
|
encoding=encoding,
|
|
api_key=api_key,
|
|
logging_obj=logging_obj,
|
|
optional_params=optional_params,
|
|
stream=stream,
|
|
_is_function_call=_is_function_call,
|
|
litellm_params=litellm_params,
|
|
logger_fn=logger_fn,
|
|
headers=headers,
|
|
client=client,
|
|
json_mode=json_mode,
|
|
timeout=timeout,
|
|
)
|
|
else:
|
|
## COMPLETION CALL
|
|
if (
|
|
stream is True
|
|
): # if function call - fake the streaming (need complete blocks for output parsing in openai format)
|
|
data["stream"] = stream
|
|
completion_stream, headers = make_sync_call(
|
|
client=client,
|
|
api_base=api_base,
|
|
headers=headers, # type: ignore
|
|
data=json.dumps(data),
|
|
model=model,
|
|
messages=messages,
|
|
logging_obj=logging_obj,
|
|
timeout=timeout,
|
|
json_mode=json_mode,
|
|
)
|
|
return CustomStreamWrapper(
|
|
completion_stream=completion_stream,
|
|
model=model,
|
|
custom_llm_provider="anthropic",
|
|
logging_obj=logging_obj,
|
|
_response_headers=process_anthropic_headers(headers),
|
|
)
|
|
|
|
else:
|
|
if client is None or not isinstance(client, HTTPHandler):
|
|
client = HTTPHandler(timeout=timeout) # type: ignore
|
|
else:
|
|
client = client
|
|
|
|
try:
|
|
response = client.post(
|
|
api_base,
|
|
headers=headers,
|
|
data=json.dumps(data),
|
|
timeout=timeout,
|
|
)
|
|
except Exception as e:
|
|
status_code = getattr(e, "status_code", 500)
|
|
error_headers = getattr(e, "headers", None)
|
|
error_text = getattr(e, "text", str(e))
|
|
error_response = getattr(e, "response", None)
|
|
if error_headers is None and error_response:
|
|
error_headers = getattr(error_response, "headers", None)
|
|
if error_response and hasattr(error_response, "text"):
|
|
error_text = getattr(error_response, "text", error_text)
|
|
raise AnthropicError(
|
|
message=error_text,
|
|
status_code=status_code,
|
|
headers=error_headers,
|
|
)
|
|
|
|
return AnthropicConfig().transform_response(
|
|
model=model,
|
|
raw_response=response,
|
|
model_response=model_response,
|
|
logging_obj=logging_obj,
|
|
api_key=api_key,
|
|
request_data=data,
|
|
messages=messages,
|
|
optional_params=optional_params,
|
|
litellm_params=litellm_params,
|
|
encoding=encoding,
|
|
json_mode=json_mode,
|
|
)
|
|
|
|
def embedding(self):
|
|
# logic for parsing in - calling - parsing out model embedding calls
|
|
pass
|
|
|
|
|
|
class ModelResponseIterator:
|
|
def __init__(
|
|
self, streaming_response, sync_stream: bool, json_mode: Optional[bool] = False
|
|
):
|
|
self.streaming_response = streaming_response
|
|
self.response_iterator = self.streaming_response
|
|
self.content_blocks: List[ContentBlockDelta] = []
|
|
self.tool_index = -1
|
|
self.json_mode = json_mode
|
|
|
|
def check_empty_tool_call_args(self) -> bool:
|
|
"""
|
|
Check if the tool call block so far has been an empty string
|
|
"""
|
|
args = ""
|
|
# if text content block -> skip
|
|
if len(self.content_blocks) == 0:
|
|
return False
|
|
|
|
if self.content_blocks[0]["delta"]["type"] == "text_delta":
|
|
return False
|
|
|
|
for block in self.content_blocks:
|
|
if block["delta"]["type"] == "input_json_delta":
|
|
args += block["delta"].get("partial_json", "") # type: ignore
|
|
|
|
if len(args) == 0:
|
|
return True
|
|
return False
|
|
|
|
def _handle_usage(
|
|
self, anthropic_usage_chunk: Union[dict, UsageDelta]
|
|
) -> AnthropicChatCompletionUsageBlock:
|
|
|
|
usage_block = AnthropicChatCompletionUsageBlock(
|
|
prompt_tokens=anthropic_usage_chunk.get("input_tokens", 0),
|
|
completion_tokens=anthropic_usage_chunk.get("output_tokens", 0),
|
|
total_tokens=anthropic_usage_chunk.get("input_tokens", 0)
|
|
+ anthropic_usage_chunk.get("output_tokens", 0),
|
|
)
|
|
|
|
cache_creation_input_tokens = anthropic_usage_chunk.get(
|
|
"cache_creation_input_tokens"
|
|
)
|
|
if cache_creation_input_tokens is not None and isinstance(
|
|
cache_creation_input_tokens, int
|
|
):
|
|
usage_block["cache_creation_input_tokens"] = cache_creation_input_tokens
|
|
|
|
cache_read_input_tokens = anthropic_usage_chunk.get("cache_read_input_tokens")
|
|
if cache_read_input_tokens is not None and isinstance(
|
|
cache_read_input_tokens, int
|
|
):
|
|
usage_block["cache_read_input_tokens"] = cache_read_input_tokens
|
|
|
|
return usage_block
|
|
|
|
def chunk_parser(self, chunk: dict) -> GenericStreamingChunk:
|
|
try:
|
|
type_chunk = chunk.get("type", "") or ""
|
|
|
|
text = ""
|
|
tool_use: Optional[ChatCompletionToolCallChunk] = None
|
|
is_finished = False
|
|
finish_reason = ""
|
|
usage: Optional[ChatCompletionUsageBlock] = None
|
|
|
|
index = int(chunk.get("index", 0))
|
|
if type_chunk == "content_block_delta":
|
|
"""
|
|
Anthropic content chunk
|
|
chunk = {'type': 'content_block_delta', 'index': 0, 'delta': {'type': 'text_delta', 'text': 'Hello'}}
|
|
"""
|
|
content_block = ContentBlockDelta(**chunk) # type: ignore
|
|
self.content_blocks.append(content_block)
|
|
if "text" in content_block["delta"]:
|
|
text = content_block["delta"]["text"]
|
|
elif "partial_json" in content_block["delta"]:
|
|
tool_use = {
|
|
"id": None,
|
|
"type": "function",
|
|
"function": {
|
|
"name": None,
|
|
"arguments": content_block["delta"]["partial_json"],
|
|
},
|
|
"index": self.tool_index,
|
|
}
|
|
elif type_chunk == "content_block_start":
|
|
"""
|
|
event: content_block_start
|
|
data: {"type":"content_block_start","index":1,"content_block":{"type":"tool_use","id":"toolu_01T1x1fJ34qAmk2tNTrN7Up6","name":"get_weather","input":{}}}
|
|
"""
|
|
content_block_start = ContentBlockStart(**chunk) # type: ignore
|
|
self.content_blocks = [] # reset content blocks when new block starts
|
|
if content_block_start["content_block"]["type"] == "text":
|
|
text = content_block_start["content_block"]["text"]
|
|
elif content_block_start["content_block"]["type"] == "tool_use":
|
|
self.tool_index += 1
|
|
tool_use = {
|
|
"id": content_block_start["content_block"]["id"],
|
|
"type": "function",
|
|
"function": {
|
|
"name": content_block_start["content_block"]["name"],
|
|
"arguments": "",
|
|
},
|
|
"index": self.tool_index,
|
|
}
|
|
elif type_chunk == "content_block_stop":
|
|
ContentBlockStop(**chunk) # type: ignore
|
|
# check if tool call content block
|
|
is_empty = self.check_empty_tool_call_args()
|
|
if is_empty:
|
|
tool_use = {
|
|
"id": None,
|
|
"type": "function",
|
|
"function": {
|
|
"name": None,
|
|
"arguments": "{}",
|
|
},
|
|
"index": self.tool_index,
|
|
}
|
|
elif type_chunk == "message_delta":
|
|
"""
|
|
Anthropic
|
|
chunk = {'type': 'message_delta', 'delta': {'stop_reason': 'max_tokens', 'stop_sequence': None}, 'usage': {'output_tokens': 10}}
|
|
"""
|
|
# TODO - get usage from this chunk, set in response
|
|
message_delta = MessageBlockDelta(**chunk) # type: ignore
|
|
finish_reason = map_finish_reason(
|
|
finish_reason=message_delta["delta"].get("stop_reason", "stop")
|
|
or "stop"
|
|
)
|
|
usage = self._handle_usage(anthropic_usage_chunk=message_delta["usage"])
|
|
is_finished = True
|
|
elif type_chunk == "message_start":
|
|
"""
|
|
Anthropic
|
|
chunk = {
|
|
"type": "message_start",
|
|
"message": {
|
|
"id": "msg_vrtx_011PqREFEMzd3REdCoUFAmdG",
|
|
"type": "message",
|
|
"role": "assistant",
|
|
"model": "claude-3-sonnet-20240229",
|
|
"content": [],
|
|
"stop_reason": null,
|
|
"stop_sequence": null,
|
|
"usage": {
|
|
"input_tokens": 270,
|
|
"output_tokens": 1
|
|
}
|
|
}
|
|
}
|
|
"""
|
|
message_start_block = MessageStartBlock(**chunk) # type: ignore
|
|
if "usage" in message_start_block["message"]:
|
|
usage = self._handle_usage(
|
|
anthropic_usage_chunk=message_start_block["message"]["usage"]
|
|
)
|
|
elif type_chunk == "error":
|
|
"""
|
|
{"type":"error","error":{"details":null,"type":"api_error","message":"Internal server error"} }
|
|
"""
|
|
_error_dict = chunk.get("error", {}) or {}
|
|
message = _error_dict.get("message", None) or str(chunk)
|
|
raise AnthropicError(
|
|
message=message,
|
|
status_code=500, # it looks like Anthropic API does not return a status code in the chunk error - default to 500
|
|
)
|
|
|
|
text, tool_use = self._handle_json_mode_chunk(text=text, tool_use=tool_use)
|
|
|
|
returned_chunk = GenericStreamingChunk(
|
|
text=text,
|
|
tool_use=tool_use,
|
|
is_finished=is_finished,
|
|
finish_reason=finish_reason,
|
|
usage=usage,
|
|
index=index,
|
|
)
|
|
|
|
return returned_chunk
|
|
|
|
except json.JSONDecodeError:
|
|
raise ValueError(f"Failed to decode JSON from chunk: {chunk}")
|
|
|
|
def _handle_json_mode_chunk(
|
|
self, text: str, tool_use: Optional[ChatCompletionToolCallChunk]
|
|
) -> Tuple[str, Optional[ChatCompletionToolCallChunk]]:
|
|
"""
|
|
If JSON mode is enabled, convert the tool call to a message.
|
|
|
|
Anthropic returns the JSON schema as part of the tool call
|
|
OpenAI returns the JSON schema as part of the content, this handles placing it in the content
|
|
|
|
Args:
|
|
text: str
|
|
tool_use: Optional[ChatCompletionToolCallChunk]
|
|
Returns:
|
|
Tuple[str, Optional[ChatCompletionToolCallChunk]]
|
|
|
|
text: The text to use in the content
|
|
tool_use: The ChatCompletionToolCallChunk to use in the chunk response
|
|
"""
|
|
if self.json_mode is True and tool_use is not None:
|
|
message = AnthropicConfig._convert_tool_response_to_message(
|
|
tool_calls=[tool_use]
|
|
)
|
|
if message is not None:
|
|
text = message.content or ""
|
|
tool_use = None
|
|
|
|
return text, tool_use
|
|
|
|
# Sync iterator
|
|
def __iter__(self):
|
|
return self
|
|
|
|
def __next__(self):
|
|
try:
|
|
chunk = self.response_iterator.__next__()
|
|
except StopIteration:
|
|
raise StopIteration
|
|
except ValueError as e:
|
|
raise RuntimeError(f"Error receiving chunk from stream: {e}")
|
|
|
|
try:
|
|
str_line = chunk
|
|
if isinstance(chunk, bytes): # Handle binary data
|
|
str_line = chunk.decode("utf-8") # Convert bytes to string
|
|
index = str_line.find("data:")
|
|
if index != -1:
|
|
str_line = str_line[index:]
|
|
|
|
if str_line.startswith("data:"):
|
|
data_json = json.loads(str_line[5:])
|
|
return self.chunk_parser(chunk=data_json)
|
|
else:
|
|
return GenericStreamingChunk(
|
|
text="",
|
|
is_finished=False,
|
|
finish_reason="",
|
|
usage=None,
|
|
index=0,
|
|
tool_use=None,
|
|
)
|
|
except StopIteration:
|
|
raise StopIteration
|
|
except ValueError as e:
|
|
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
|
|
|
|
# Async iterator
|
|
def __aiter__(self):
|
|
self.async_response_iterator = self.streaming_response.__aiter__()
|
|
return self
|
|
|
|
async def __anext__(self):
|
|
try:
|
|
chunk = await self.async_response_iterator.__anext__()
|
|
except StopAsyncIteration:
|
|
raise StopAsyncIteration
|
|
except ValueError as e:
|
|
raise RuntimeError(f"Error receiving chunk from stream: {e}")
|
|
|
|
try:
|
|
str_line = chunk
|
|
if isinstance(chunk, bytes): # Handle binary data
|
|
str_line = chunk.decode("utf-8") # Convert bytes to string
|
|
index = str_line.find("data:")
|
|
if index != -1:
|
|
str_line = str_line[index:]
|
|
|
|
if str_line.startswith("data:"):
|
|
data_json = json.loads(str_line[5:])
|
|
return self.chunk_parser(chunk=data_json)
|
|
else:
|
|
return GenericStreamingChunk(
|
|
text="",
|
|
is_finished=False,
|
|
finish_reason="",
|
|
usage=None,
|
|
index=0,
|
|
tool_use=None,
|
|
)
|
|
except StopAsyncIteration:
|
|
raise StopAsyncIteration
|
|
except ValueError as e:
|
|
raise RuntimeError(f"Error parsing chunk: {e},\nReceived chunk: {chunk}")
|
|
|
|
def convert_str_chunk_to_generic_chunk(self, chunk: str) -> GenericStreamingChunk:
|
|
"""
|
|
Convert a string chunk to a GenericStreamingChunk
|
|
|
|
Note: This is used for Anthropic pass through streaming logging
|
|
|
|
We can move __anext__, and __next__ to use this function since it's common logic.
|
|
Did not migrate them to minmize changes made in 1 PR.
|
|
"""
|
|
str_line = chunk
|
|
if isinstance(chunk, bytes): # Handle binary data
|
|
str_line = chunk.decode("utf-8") # Convert bytes to string
|
|
index = str_line.find("data:")
|
|
if index != -1:
|
|
str_line = str_line[index:]
|
|
|
|
if str_line.startswith("data:"):
|
|
data_json = json.loads(str_line[5:])
|
|
return self.chunk_parser(chunk=data_json)
|
|
else:
|
|
return GenericStreamingChunk(
|
|
text="",
|
|
is_finished=False,
|
|
finish_reason="",
|
|
usage=None,
|
|
index=0,
|
|
tool_use=None,
|
|
)
|