mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 10:44:24 +00:00
* remove unused imports * fix AmazonConverseConfig * fix test * fix import * ruff check fixes * test fixes * fix testing * fix imports
289 lines
12 KiB
Python
289 lines
12 KiB
Python
from typing import TYPE_CHECKING, Any, List, Optional, Union
|
||
|
||
from httpx._models import Headers, Response
|
||
|
||
import litellm
|
||
from litellm.litellm_core_utils.prompt_templates.factory import (
|
||
convert_to_azure_openai_messages,
|
||
)
|
||
from litellm.llms.base_llm.chat.transformation import BaseLLMException
|
||
from litellm.types.utils import ModelResponse
|
||
|
||
from ....exceptions import UnsupportedParamsError
|
||
from ....types.llms.openai import (
|
||
AllMessageValues,
|
||
ChatCompletionToolChoiceFunctionParam,
|
||
ChatCompletionToolChoiceObjectParam,
|
||
ChatCompletionToolParam,
|
||
ChatCompletionToolParamFunctionChunk,
|
||
)
|
||
from ...base_llm.chat.transformation import BaseConfig
|
||
from ..common_utils import AzureOpenAIError
|
||
|
||
if TYPE_CHECKING:
|
||
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
||
|
||
LoggingClass = LiteLLMLoggingObj
|
||
else:
|
||
LoggingClass = Any
|
||
|
||
|
||
class AzureOpenAIConfig(BaseConfig):
|
||
"""
|
||
Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions
|
||
|
||
The class `AzureOpenAIConfig` provides configuration for the OpenAI's Chat API interface, for use with Azure. Below are the parameters::
|
||
|
||
- `frequency_penalty` (number or null): Defaults to 0. Allows a value between -2.0 and 2.0. Positive values penalize new tokens based on their existing frequency in the text so far, thereby minimizing repetition.
|
||
|
||
- `function_call` (string or object): This optional parameter controls how the model calls functions.
|
||
|
||
- `functions` (array): An optional parameter. It is a list of functions for which the model may generate JSON inputs.
|
||
|
||
- `logit_bias` (map): This optional parameter modifies the likelihood of specified tokens appearing in the completion.
|
||
|
||
- `max_tokens` (integer or null): This optional parameter helps to set the maximum number of tokens to generate in the chat completion.
|
||
|
||
- `n` (integer or null): This optional parameter helps to set how many chat completion choices to generate for each input message.
|
||
|
||
- `presence_penalty` (number or null): Defaults to 0. It penalizes new tokens based on if they appear in the text so far, hence increasing the model's likelihood to talk about new topics.
|
||
|
||
- `stop` (string / array / null): Specifies up to 4 sequences where the API will stop generating further tokens.
|
||
|
||
- `temperature` (number or null): Defines the sampling temperature to use, varying between 0 and 2.
|
||
|
||
- `top_p` (number or null): An alternative to sampling with temperature, used for nucleus sampling.
|
||
"""
|
||
|
||
def __init__(
|
||
self,
|
||
frequency_penalty: Optional[int] = None,
|
||
function_call: Optional[Union[str, dict]] = None,
|
||
functions: Optional[list] = None,
|
||
logit_bias: Optional[dict] = None,
|
||
max_tokens: Optional[int] = None,
|
||
n: Optional[int] = None,
|
||
presence_penalty: Optional[int] = None,
|
||
stop: Optional[Union[str, list]] = None,
|
||
temperature: Optional[int] = None,
|
||
top_p: Optional[int] = None,
|
||
) -> None:
|
||
locals_ = locals().copy()
|
||
for key, value in locals_.items():
|
||
if key != "self" and value is not None:
|
||
setattr(self.__class__, key, value)
|
||
|
||
@classmethod
|
||
def get_config(cls):
|
||
return super().get_config()
|
||
|
||
def get_supported_openai_params(self, model: str) -> List[str]:
|
||
return [
|
||
"temperature",
|
||
"n",
|
||
"stream",
|
||
"stream_options",
|
||
"stop",
|
||
"max_tokens",
|
||
"max_completion_tokens",
|
||
"tools",
|
||
"tool_choice",
|
||
"presence_penalty",
|
||
"frequency_penalty",
|
||
"logit_bias",
|
||
"user",
|
||
"function_call",
|
||
"functions",
|
||
"tools",
|
||
"tool_choice",
|
||
"top_p",
|
||
"logprobs",
|
||
"top_logprobs",
|
||
"response_format",
|
||
"seed",
|
||
"extra_headers",
|
||
"parallel_tool_calls",
|
||
]
|
||
|
||
def map_openai_params(
|
||
self,
|
||
non_default_params: dict,
|
||
optional_params: dict,
|
||
model: str,
|
||
drop_params: bool,
|
||
api_version: str = "",
|
||
) -> dict:
|
||
supported_openai_params = self.get_supported_openai_params(model)
|
||
|
||
api_version_times = api_version.split("-")
|
||
api_version_year = api_version_times[0]
|
||
api_version_month = api_version_times[1]
|
||
api_version_day = api_version_times[2]
|
||
for param, value in non_default_params.items():
|
||
if param == "tool_choice":
|
||
"""
|
||
This parameter requires API version 2023-12-01-preview or later
|
||
|
||
tool_choice='required' is not supported as of 2024-05-01-preview
|
||
"""
|
||
## check if api version supports this param ##
|
||
if (
|
||
api_version_year < "2023"
|
||
or (api_version_year == "2023" and api_version_month < "12")
|
||
or (
|
||
api_version_year == "2023"
|
||
and api_version_month == "12"
|
||
and api_version_day < "01"
|
||
)
|
||
):
|
||
if litellm.drop_params is True or (
|
||
drop_params is not None and drop_params is True
|
||
):
|
||
pass
|
||
else:
|
||
raise UnsupportedParamsError(
|
||
status_code=400,
|
||
message=f"""Azure does not support 'tool_choice', for api_version={api_version}. Bump your API version to '2023-12-01-preview' or later. This parameter requires 'api_version="2023-12-01-preview"' or later. Azure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions""",
|
||
)
|
||
elif value == "required" and (
|
||
api_version_year == "2024" and api_version_month <= "05"
|
||
): ## check if tool_choice value is supported ##
|
||
if litellm.drop_params is True or (
|
||
drop_params is not None and drop_params is True
|
||
):
|
||
pass
|
||
else:
|
||
raise UnsupportedParamsError(
|
||
status_code=400,
|
||
message=f"Azure does not support '{value}' as a {param} param, for api_version={api_version}. To drop 'tool_choice=required' for calls with this Azure API version, set `litellm.drop_params=True` or for proxy:\n\n`litellm_settings:\n drop_params: true`\nAzure API Reference: https://learn.microsoft.com/en-us/azure/ai-services/openai/reference#chat-completions",
|
||
)
|
||
else:
|
||
optional_params["tool_choice"] = value
|
||
elif param == "response_format" and isinstance(value, dict):
|
||
json_schema: Optional[dict] = None
|
||
schema_name: str = ""
|
||
if "response_schema" in value:
|
||
json_schema = value["response_schema"]
|
||
schema_name = "json_tool_call"
|
||
elif "json_schema" in value:
|
||
json_schema = value["json_schema"]["schema"]
|
||
schema_name = value["json_schema"]["name"]
|
||
"""
|
||
Follow similar approach to anthropic - translate to a single tool call.
|
||
|
||
When using tools in this way: - https://docs.anthropic.com/en/docs/build-with-claude/tool-use#json-mode
|
||
- You usually want to provide a single tool
|
||
- You should set tool_choice (see Forcing tool use) to instruct the model to explicitly use that tool
|
||
- Remember that the model will pass the input to the tool, so the name of the tool and description should be from the model’s perspective.
|
||
"""
|
||
if json_schema is not None and (
|
||
(api_version_year <= "2024" and api_version_month < "08")
|
||
or "gpt-4o" not in model
|
||
): # azure api version "2024-08-01-preview" onwards supports 'json_schema' only for gpt-4o
|
||
_tool_choice = ChatCompletionToolChoiceObjectParam(
|
||
type="function",
|
||
function=ChatCompletionToolChoiceFunctionParam(
|
||
name=schema_name
|
||
),
|
||
)
|
||
|
||
_tool = ChatCompletionToolParam(
|
||
type="function",
|
||
function=ChatCompletionToolParamFunctionChunk(
|
||
name=schema_name, parameters=json_schema
|
||
),
|
||
)
|
||
|
||
optional_params["tools"] = [_tool]
|
||
optional_params["tool_choice"] = _tool_choice
|
||
optional_params["json_mode"] = True
|
||
else:
|
||
optional_params["response_format"] = value
|
||
elif param in supported_openai_params:
|
||
optional_params[param] = value
|
||
|
||
return optional_params
|
||
|
||
def transform_request(
|
||
self,
|
||
model: str,
|
||
messages: List[AllMessageValues],
|
||
optional_params: dict,
|
||
litellm_params: dict,
|
||
headers: dict,
|
||
) -> dict:
|
||
messages = convert_to_azure_openai_messages(messages)
|
||
return {
|
||
"model": model,
|
||
"messages": messages,
|
||
**optional_params,
|
||
}
|
||
|
||
def transform_response(
|
||
self,
|
||
model: str,
|
||
raw_response: Response,
|
||
model_response: ModelResponse,
|
||
logging_obj: LoggingClass,
|
||
request_data: dict,
|
||
messages: List[AllMessageValues],
|
||
optional_params: dict,
|
||
litellm_params: dict,
|
||
encoding: Any,
|
||
api_key: Optional[str] = None,
|
||
json_mode: Optional[bool] = None,
|
||
) -> ModelResponse:
|
||
raise NotImplementedError(
|
||
"Azure OpenAI handler.py has custom logic for transforming response, as it uses the OpenAI SDK."
|
||
)
|
||
|
||
def get_mapped_special_auth_params(self) -> dict:
|
||
return {"token": "azure_ad_token"}
|
||
|
||
def map_special_auth_params(self, non_default_params: dict, optional_params: dict):
|
||
for param, value in non_default_params.items():
|
||
if param == "token":
|
||
optional_params["azure_ad_token"] = value
|
||
return optional_params
|
||
|
||
def get_eu_regions(self) -> List[str]:
|
||
"""
|
||
Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
|
||
"""
|
||
return ["europe", "sweden", "switzerland", "france", "uk"]
|
||
|
||
def get_us_regions(self) -> List[str]:
|
||
"""
|
||
Source: https://learn.microsoft.com/en-us/azure/ai-services/openai/concepts/models#gpt-4-and-gpt-4-turbo-model-availability
|
||
"""
|
||
return [
|
||
"us",
|
||
"eastus",
|
||
"eastus2",
|
||
"eastus2euap",
|
||
"eastus3",
|
||
"southcentralus",
|
||
"westus",
|
||
"westus2",
|
||
"westus3",
|
||
"westus4",
|
||
]
|
||
|
||
def get_error_class(
|
||
self, error_message: str, status_code: int, headers: Union[dict, Headers]
|
||
) -> BaseLLMException:
|
||
return AzureOpenAIError(
|
||
message=error_message, status_code=status_code, headers=headers
|
||
)
|
||
|
||
def validate_environment(
|
||
self,
|
||
headers: dict,
|
||
model: str,
|
||
messages: List[AllMessageValues],
|
||
optional_params: dict,
|
||
api_key: Optional[str] = None,
|
||
) -> dict:
|
||
raise NotImplementedError(
|
||
"Azure OpenAI has custom logic for validating environment, as it uses the OpenAI SDK."
|
||
)
|