mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
* Minor IAM AWS OIDC Improvements (#5246)
* AWS IAM: Temporary tokens are valid across all regions after being issued, so it is wasteful to request one for each region.
* AWS IAM: Include an inline policy, to help reduce misuse of overly permissive IAM roles.
* (test_bedrock_completion.py): Ensure we are testing cross AWS region OIDC flow.
* fix(router.py): log rejected requests
Fixes https://github.com/BerriAI/litellm/issues/5498
* refactor: don't use verbose_logger.exception, if exception is raised
User might already have handling for this. But alerting systems in prod will raise this as an unhandled error.
* fix(datadog.py): support setting datadog source as an env var
Fixes https://github.com/BerriAI/litellm/issues/5508
* docs(logging.md): add dd_source to datadog docs
* fix(proxy_server.py): expose `/customer/list` endpoint for showing all customers
* (bedrock): Fix usage with Cloudflare AI Gateway, and proxies in general. (#5509)
* feat(anthropic.py): support 'cache_control' param for content when it is a string
* Revert "(bedrock): Fix usage with Cloudflare AI Gateway, and proxies in gener…" (#5519)
This reverts commit 3fac0349c2
.
* refactor: ci/cd run again
---------
Co-authored-by: David Manouchehri <david.manouchehri@ai.moda>
202 lines
6.7 KiB
Python
202 lines
6.7 KiB
Python
import copy
|
|
import time
|
|
import traceback
|
|
import types
|
|
from typing import Callable, Optional
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm import verbose_logger
|
|
from litellm.utils import Choices, Message, ModelResponse, Usage
|
|
|
|
|
|
class PalmError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(
|
|
method="POST",
|
|
url="https://developers.generativeai.google/api/python/google/generativeai/chat",
|
|
)
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
class PalmConfig:
|
|
"""
|
|
Reference: https://developers.generativeai.google/api/python/google/generativeai/chat
|
|
|
|
The class `PalmConfig` provides configuration for the Palm's API interface. Here are the parameters:
|
|
|
|
- `context` (string): Text that should be provided to the model first, to ground the response. This could be a prompt to guide the model's responses.
|
|
|
|
- `examples` (list): Examples of what the model should generate. They are treated identically to conversation messages except that they take precedence over the history in messages if the total input size exceeds the model's input_token_limit.
|
|
|
|
- `temperature` (float): Controls the randomness of the output. Must be positive. Higher values produce a more random and varied response. A temperature of zero will be deterministic.
|
|
|
|
- `candidate_count` (int): Maximum number of generated response messages to return. This value must be between [1, 8], inclusive. Only unique candidates are returned.
|
|
|
|
- `top_k` (int): The API uses combined nucleus and top-k sampling. `top_k` sets the maximum number of tokens to sample from on each step.
|
|
|
|
- `top_p` (float): The API uses combined nucleus and top-k sampling. `top_p` configures the nucleus sampling. It sets the maximum cumulative probability of tokens to sample from.
|
|
|
|
- `max_output_tokens` (int): Sets the maximum number of tokens to be returned in the output
|
|
"""
|
|
|
|
context: Optional[str] = None
|
|
examples: Optional[list] = None
|
|
temperature: Optional[float] = None
|
|
candidate_count: Optional[int] = None
|
|
top_k: Optional[int] = None
|
|
top_p: Optional[float] = None
|
|
max_output_tokens: Optional[int] = None
|
|
|
|
def __init__(
|
|
self,
|
|
context: Optional[str] = None,
|
|
examples: Optional[list] = None,
|
|
temperature: Optional[float] = None,
|
|
candidate_count: Optional[int] = None,
|
|
top_k: Optional[int] = None,
|
|
top_p: Optional[float] = None,
|
|
max_output_tokens: Optional[int] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
|
|
def completion(
|
|
model: str,
|
|
messages: list,
|
|
model_response: ModelResponse,
|
|
print_verbose: Callable,
|
|
api_key,
|
|
encoding,
|
|
logging_obj,
|
|
optional_params=None,
|
|
litellm_params=None,
|
|
logger_fn=None,
|
|
):
|
|
try:
|
|
import google.generativeai as palm # type: ignore
|
|
except:
|
|
raise Exception(
|
|
"Importing google.generativeai failed, please run 'pip install -q google-generativeai"
|
|
)
|
|
palm.configure(api_key=api_key)
|
|
|
|
model = model
|
|
|
|
## Load Config
|
|
inference_params = copy.deepcopy(optional_params)
|
|
inference_params.pop(
|
|
"stream", None
|
|
) # palm does not support streaming, so we handle this by fake streaming in main.py
|
|
config = litellm.PalmConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in inference_params
|
|
): # completion(top_k=3) > palm_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
inference_params[k] = v
|
|
|
|
prompt = ""
|
|
for message in messages:
|
|
if "role" in message:
|
|
if message["role"] == "user":
|
|
prompt += f"{message['content']}"
|
|
else:
|
|
prompt += f"{message['content']}"
|
|
else:
|
|
prompt += f"{message['content']}"
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=prompt,
|
|
api_key="",
|
|
additional_args={"complete_input_dict": {"inference_params": inference_params}},
|
|
)
|
|
## COMPLETION CALL
|
|
try:
|
|
response = palm.generate_text(prompt=prompt, **inference_params)
|
|
except Exception as e:
|
|
raise PalmError(
|
|
message=str(e),
|
|
status_code=500,
|
|
)
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key="",
|
|
original_response=response,
|
|
additional_args={"complete_input_dict": {}},
|
|
)
|
|
print_verbose(f"raw model_response: {response}")
|
|
## RESPONSE OBJECT
|
|
completion_response = response
|
|
try:
|
|
choices_list = []
|
|
for idx, item in enumerate(completion_response.candidates):
|
|
if len(item["output"]) > 0:
|
|
message_obj = Message(content=item["output"])
|
|
else:
|
|
message_obj = Message(content=None)
|
|
choice_obj = Choices(index=idx + 1, message=message_obj)
|
|
choices_list.append(choice_obj)
|
|
model_response.choices = choices_list # type: ignore
|
|
except Exception as e:
|
|
raise PalmError(
|
|
message=traceback.format_exc(), status_code=response.status_code
|
|
)
|
|
|
|
try:
|
|
completion_response = model_response["choices"][0]["message"].get("content")
|
|
except:
|
|
raise PalmError(
|
|
status_code=400,
|
|
message=f"No response received. Original response - {response}",
|
|
)
|
|
|
|
## CALCULATING USAGE - baseten charges on time, not tokens - have some mapping of cost here.
|
|
prompt_tokens = len(encoding.encode(prompt))
|
|
completion_tokens = len(
|
|
encoding.encode(model_response["choices"][0]["message"].get("content", ""))
|
|
)
|
|
|
|
model_response.created = int(time.time())
|
|
model_response.model = "palm/" + model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
setattr(model_response, "usage", usage)
|
|
return model_response
|
|
|
|
|
|
def embedding():
|
|
# logic for parsing in - calling - parsing out model embedding calls
|
|
pass
|