mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
* run azure testing on ci/cd * update docs on azure batches endpoints * add input azure.jsonl * refactor - use separate file for batches endpoints * fixes for passing custom llm provider to /batch endpoints * pass custom llm provider to files endpoints * update azure batches doc * add info for azure batches api * update batches endpoints * use simple helper for raising proxy exception * update config.yml * fix imports * update tests * use existing settings * update env var used * update configs * update config.yml * update ft testing
39 lines
1.2 KiB
Python
39 lines
1.2 KiB
Python
"""
|
|
Contains utils used by OpenAI compatible endpoints
|
|
"""
|
|
|
|
from typing import Optional
|
|
|
|
from fastapi import Request
|
|
|
|
from litellm.proxy.common_utils.http_parsing_utils import _read_request_body
|
|
|
|
|
|
def remove_sensitive_info_from_deployment(deployment_dict: dict) -> dict:
|
|
"""
|
|
Removes sensitive information from a deployment dictionary.
|
|
|
|
Args:
|
|
deployment_dict (dict): The deployment dictionary to remove sensitive information from.
|
|
|
|
Returns:
|
|
dict: The modified deployment dictionary with sensitive information removed.
|
|
"""
|
|
deployment_dict["litellm_params"].pop("api_key", None)
|
|
deployment_dict["litellm_params"].pop("vertex_credentials", None)
|
|
deployment_dict["litellm_params"].pop("aws_access_key_id", None)
|
|
deployment_dict["litellm_params"].pop("aws_secret_access_key", None)
|
|
|
|
return deployment_dict
|
|
|
|
|
|
async def get_custom_llm_provider_from_request_body(request: Request) -> Optional[str]:
|
|
"""
|
|
Get the `custom_llm_provider` from the request body
|
|
|
|
Safely reads the request body
|
|
"""
|
|
request_body: dict = await _read_request_body(request=request) or {}
|
|
if "custom_llm_provider" in request_body:
|
|
return request_body["custom_llm_provider"]
|
|
return None
|