mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 02:34:29 +00:00
* fix(core_helpers.py): handle litellm_metadata instead of 'metadata' * feat(batches/): ensure batches logs are written to db makes batches response dict compatible * fix(cost_calculator.py): handle batch response being a dictionary * fix(batches/main.py): modify retrieve endpoints to use @client decorator enables logging to work on retrieve call * fix(batches/main.py): fix retrieve batch response type to be 'dict' compatible * fix(spend_tracking_utils.py): send unique uuid for retrieve batch call type create batch and retrieve batch share the same id * fix(spend_tracking_utils.py): prevent duplicate retrieve batch calls from being double counted * refactor(batches/): refactor cost tracking for batches - do it on retrieve, and within the established litellm_logging pipeline ensures cost is always logged to db * fix: fix linting errors * fix: fix linting error
241 lines
8.3 KiB
Python
241 lines
8.3 KiB
Python
"""
|
|
Azure Batches API Handler
|
|
"""
|
|
|
|
from typing import Any, Coroutine, Optional, Union, cast
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm.llms.azure.azure import AsyncAzureOpenAI, AzureOpenAI
|
|
from litellm.types.llms.openai import (
|
|
Batch,
|
|
CancelBatchRequest,
|
|
CreateBatchRequest,
|
|
RetrieveBatchRequest,
|
|
)
|
|
from litellm.types.utils import LiteLLMBatch
|
|
|
|
|
|
class AzureBatchesAPI:
|
|
"""
|
|
Azure methods to support for batches
|
|
- create_batch()
|
|
- retrieve_batch()
|
|
- cancel_batch()
|
|
- list_batch()
|
|
"""
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
def get_azure_openai_client(
|
|
self,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
api_version: Optional[str] = None,
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
_is_async: bool = False,
|
|
) -> Optional[Union[AzureOpenAI, AsyncAzureOpenAI]]:
|
|
received_args = locals()
|
|
openai_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None
|
|
if client is None:
|
|
data = {}
|
|
for k, v in received_args.items():
|
|
if k == "self" or k == "client" or k == "_is_async":
|
|
pass
|
|
elif k == "api_base" and v is not None:
|
|
data["azure_endpoint"] = v
|
|
elif v is not None:
|
|
data[k] = v
|
|
if "api_version" not in data:
|
|
data["api_version"] = litellm.AZURE_DEFAULT_API_VERSION
|
|
if _is_async is True:
|
|
openai_client = AsyncAzureOpenAI(**data)
|
|
else:
|
|
openai_client = AzureOpenAI(**data) # type: ignore
|
|
else:
|
|
openai_client = client
|
|
|
|
return openai_client
|
|
|
|
async def acreate_batch(
|
|
self,
|
|
create_batch_data: CreateBatchRequest,
|
|
azure_client: AsyncAzureOpenAI,
|
|
) -> LiteLLMBatch:
|
|
response = await azure_client.batches.create(**create_batch_data)
|
|
return LiteLLMBatch(**response.model_dump())
|
|
|
|
def create_batch(
|
|
self,
|
|
_is_async: bool,
|
|
create_batch_data: CreateBatchRequest,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
api_version: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = None,
|
|
) -> Union[LiteLLMBatch, Coroutine[Any, Any, LiteLLMBatch]]:
|
|
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
|
self.get_azure_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
timeout=timeout,
|
|
api_version=api_version,
|
|
max_retries=max_retries,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
)
|
|
if azure_client is None:
|
|
raise ValueError(
|
|
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(azure_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
|
)
|
|
return self.acreate_batch( # type: ignore
|
|
create_batch_data=create_batch_data, azure_client=azure_client
|
|
)
|
|
response = cast(AzureOpenAI, azure_client).batches.create(**create_batch_data)
|
|
return LiteLLMBatch(**response.model_dump())
|
|
|
|
async def aretrieve_batch(
|
|
self,
|
|
retrieve_batch_data: RetrieveBatchRequest,
|
|
client: AsyncAzureOpenAI,
|
|
) -> LiteLLMBatch:
|
|
response = await client.batches.retrieve(**retrieve_batch_data)
|
|
return LiteLLMBatch(**response.model_dump())
|
|
|
|
def retrieve_batch(
|
|
self,
|
|
_is_async: bool,
|
|
retrieve_batch_data: RetrieveBatchRequest,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
api_version: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
client: Optional[AzureOpenAI] = None,
|
|
):
|
|
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
|
self.get_azure_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
api_version=api_version,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
)
|
|
if azure_client is None:
|
|
raise ValueError(
|
|
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(azure_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
|
)
|
|
return self.aretrieve_batch( # type: ignore
|
|
retrieve_batch_data=retrieve_batch_data, client=azure_client
|
|
)
|
|
response = cast(AzureOpenAI, azure_client).batches.retrieve(
|
|
**retrieve_batch_data
|
|
)
|
|
return LiteLLMBatch(**response.model_dump())
|
|
|
|
async def acancel_batch(
|
|
self,
|
|
cancel_batch_data: CancelBatchRequest,
|
|
client: AsyncAzureOpenAI,
|
|
) -> Batch:
|
|
response = await client.batches.cancel(**cancel_batch_data)
|
|
return response
|
|
|
|
def cancel_batch(
|
|
self,
|
|
_is_async: bool,
|
|
cancel_batch_data: CancelBatchRequest,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
api_version: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
client: Optional[AzureOpenAI] = None,
|
|
):
|
|
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
|
self.get_azure_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
api_version=api_version,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
)
|
|
if azure_client is None:
|
|
raise ValueError(
|
|
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
response = azure_client.batches.cancel(**cancel_batch_data)
|
|
return response
|
|
|
|
async def alist_batches(
|
|
self,
|
|
client: AsyncAzureOpenAI,
|
|
after: Optional[str] = None,
|
|
limit: Optional[int] = None,
|
|
):
|
|
response = await client.batches.list(after=after, limit=limit) # type: ignore
|
|
return response
|
|
|
|
def list_batches(
|
|
self,
|
|
_is_async: bool,
|
|
api_key: Optional[str],
|
|
api_base: Optional[str],
|
|
api_version: Optional[str],
|
|
timeout: Union[float, httpx.Timeout],
|
|
max_retries: Optional[int],
|
|
after: Optional[str] = None,
|
|
limit: Optional[int] = None,
|
|
client: Optional[AzureOpenAI] = None,
|
|
):
|
|
azure_client: Optional[Union[AzureOpenAI, AsyncAzureOpenAI]] = (
|
|
self.get_azure_openai_client(
|
|
api_key=api_key,
|
|
api_base=api_base,
|
|
timeout=timeout,
|
|
max_retries=max_retries,
|
|
api_version=api_version,
|
|
client=client,
|
|
_is_async=_is_async,
|
|
)
|
|
)
|
|
if azure_client is None:
|
|
raise ValueError(
|
|
"OpenAI client is not initialized. Make sure api_key is passed or OPENAI_API_KEY is set in the environment."
|
|
)
|
|
|
|
if _is_async is True:
|
|
if not isinstance(azure_client, AsyncAzureOpenAI):
|
|
raise ValueError(
|
|
"OpenAI client is not an instance of AsyncOpenAI. Make sure you passed an AsyncOpenAI client."
|
|
)
|
|
return self.alist_batches( # type: ignore
|
|
client=azure_client, after=after, limit=limit
|
|
)
|
|
response = azure_client.batches.list(after=after, limit=limit) # type: ignore
|
|
return response
|