mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-25 18:54:30 +00:00
318 lines
12 KiB
Python
318 lines
12 KiB
Python
from typing import TYPE_CHECKING, Any, List, Optional, Union
|
|
|
|
import httpx
|
|
|
|
import litellm
|
|
from litellm.litellm_core_utils.prompt_templates.common_utils import (
|
|
convert_content_list_to_str,
|
|
)
|
|
from litellm.litellm_core_utils.prompt_templates.factory import (
|
|
custom_prompt,
|
|
prompt_factory,
|
|
)
|
|
from litellm.llms.base_llm.chat.transformation import BaseConfig, BaseLLMException
|
|
from litellm.types.llms.openai import AllMessageValues
|
|
from litellm.types.utils import ModelResponse, Usage
|
|
from litellm.utils import token_counter
|
|
|
|
from ..common_utils import ReplicateError
|
|
|
|
if TYPE_CHECKING:
|
|
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
|
|
|
|
LoggingClass = LiteLLMLoggingObj
|
|
else:
|
|
LoggingClass = Any
|
|
|
|
|
|
class ReplicateConfig(BaseConfig):
|
|
"""
|
|
Reference: https://replicate.com/meta/llama-2-70b-chat/api
|
|
- `prompt` (string): The prompt to send to the model.
|
|
|
|
- `system_prompt` (string): The system prompt to send to the model. This is prepended to the prompt and helps guide system behavior. Default value: `You are a helpful assistant`.
|
|
|
|
- `max_new_tokens` (integer): Maximum number of tokens to generate. Typically, a word is made up of 2-3 tokens. Default value: `128`.
|
|
|
|
- `min_new_tokens` (integer): Minimum number of tokens to generate. To disable, set to `-1`. A word is usually 2-3 tokens. Default value: `-1`.
|
|
|
|
- `temperature` (number): Adjusts the randomness of outputs. Values greater than 1 increase randomness, 0 is deterministic, and 0.75 is a reasonable starting value. Default value: `0.75`.
|
|
|
|
- `top_p` (number): During text decoding, it samples from the top `p` percentage of most likely tokens. Reduce this to ignore less probable tokens. Default value: `0.9`.
|
|
|
|
- `top_k` (integer): During text decoding, samples from the top `k` most likely tokens. Reduce this to ignore less probable tokens. Default value: `50`.
|
|
|
|
- `stop_sequences` (string): A comma-separated list of sequences to stop generation at. For example, inputting '<end>,<stop>' will cease generation at the first occurrence of either 'end' or '<stop>'.
|
|
|
|
- `seed` (integer): This is the seed for the random generator. Leave it blank to randomize the seed.
|
|
|
|
- `debug` (boolean): If set to `True`, it provides debugging output in logs.
|
|
|
|
Please note that Replicate's mapping of these parameters can be inconsistent across different models, indicating that not all of these parameters may be available for use with all models.
|
|
"""
|
|
|
|
system_prompt: Optional[str] = None
|
|
max_new_tokens: Optional[int] = None
|
|
min_new_tokens: Optional[int] = None
|
|
temperature: Optional[int] = None
|
|
top_p: Optional[int] = None
|
|
top_k: Optional[int] = None
|
|
stop_sequences: Optional[str] = None
|
|
seed: Optional[int] = None
|
|
debug: Optional[bool] = None
|
|
|
|
def __init__(
|
|
self,
|
|
system_prompt: Optional[str] = None,
|
|
max_new_tokens: Optional[int] = None,
|
|
min_new_tokens: Optional[int] = None,
|
|
temperature: Optional[int] = None,
|
|
top_p: Optional[int] = None,
|
|
top_k: Optional[int] = None,
|
|
stop_sequences: Optional[str] = None,
|
|
seed: Optional[int] = None,
|
|
debug: Optional[bool] = None,
|
|
) -> None:
|
|
locals_ = locals().copy()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return super().get_config()
|
|
|
|
def get_supported_openai_params(self, model: str) -> list:
|
|
return [
|
|
"stream",
|
|
"temperature",
|
|
"max_tokens",
|
|
"top_p",
|
|
"stop",
|
|
"seed",
|
|
"tools",
|
|
"tool_choice",
|
|
"functions",
|
|
"function_call",
|
|
]
|
|
|
|
def map_openai_params(
|
|
self,
|
|
non_default_params: dict,
|
|
optional_params: dict,
|
|
model: str,
|
|
drop_params: bool,
|
|
) -> dict:
|
|
for param, value in non_default_params.items():
|
|
if param == "stream":
|
|
optional_params["stream"] = value
|
|
if param == "max_tokens":
|
|
if "vicuna" in model or "flan" in model:
|
|
optional_params["max_length"] = value
|
|
elif "meta/codellama-13b" in model:
|
|
optional_params["max_tokens"] = value
|
|
else:
|
|
optional_params["max_new_tokens"] = value
|
|
if param == "temperature":
|
|
optional_params["temperature"] = value
|
|
if param == "top_p":
|
|
optional_params["top_p"] = value
|
|
if param == "stop":
|
|
optional_params["stop_sequences"] = value
|
|
|
|
return optional_params
|
|
|
|
# Function to extract version ID from model string
|
|
def model_to_version_id(self, model: str) -> str:
|
|
if ":" in model:
|
|
split_model = model.split(":")
|
|
return split_model[1]
|
|
return model
|
|
|
|
def get_error_class(
|
|
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
|
|
) -> BaseLLMException:
|
|
return ReplicateError(
|
|
status_code=status_code, message=error_message, headers=headers
|
|
)
|
|
|
|
def get_complete_url(
|
|
self,
|
|
api_base: Optional[str],
|
|
model: str,
|
|
optional_params: dict,
|
|
stream: Optional[bool] = None,
|
|
) -> str:
|
|
version_id = self.model_to_version_id(model)
|
|
base_url = api_base
|
|
if "deployments" in version_id:
|
|
version_id = version_id.replace("deployments/", "")
|
|
base_url = f"https://api.replicate.com/v1/deployments/{version_id}"
|
|
else: # assume it's a model
|
|
base_url = f"https://api.replicate.com/v1/models/{version_id}"
|
|
|
|
base_url = f"{base_url}/predictions"
|
|
return base_url
|
|
|
|
def transform_request(
|
|
self,
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
headers: dict,
|
|
) -> dict:
|
|
## Load Config
|
|
config = litellm.ReplicateConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in optional_params
|
|
): # completion(top_k=3) > replicate_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
system_prompt = None
|
|
if optional_params is not None and "supports_system_prompt" in optional_params:
|
|
supports_sys_prompt = optional_params.pop("supports_system_prompt")
|
|
else:
|
|
supports_sys_prompt = False
|
|
|
|
if supports_sys_prompt:
|
|
for i in range(len(messages)):
|
|
if messages[i]["role"] == "system":
|
|
first_sys_message = messages.pop(i)
|
|
system_prompt = convert_content_list_to_str(first_sys_message)
|
|
break
|
|
|
|
if model in litellm.custom_prompt_dict:
|
|
# check if the model has a registered custom prompt
|
|
model_prompt_details = litellm.custom_prompt_dict[model]
|
|
prompt = custom_prompt(
|
|
role_dict=model_prompt_details.get("roles", {}),
|
|
initial_prompt_value=model_prompt_details.get(
|
|
"initial_prompt_value", ""
|
|
),
|
|
final_prompt_value=model_prompt_details.get("final_prompt_value", ""),
|
|
bos_token=model_prompt_details.get("bos_token", ""),
|
|
eos_token=model_prompt_details.get("eos_token", ""),
|
|
messages=messages,
|
|
)
|
|
else:
|
|
prompt = prompt_factory(model=model, messages=messages)
|
|
|
|
if prompt is None or not isinstance(prompt, str):
|
|
raise ReplicateError(
|
|
status_code=400,
|
|
message="LiteLLM Error - prompt is not a string - {}".format(prompt),
|
|
headers={},
|
|
)
|
|
|
|
# If system prompt is supported, and a system prompt is provided, use it
|
|
if system_prompt is not None:
|
|
input_data = {
|
|
"prompt": prompt,
|
|
"system_prompt": system_prompt,
|
|
**optional_params,
|
|
}
|
|
# Otherwise, use the prompt as is
|
|
else:
|
|
input_data = {"prompt": prompt, **optional_params}
|
|
|
|
version_id = self.model_to_version_id(model)
|
|
request_data: dict = {"input": input_data}
|
|
if ":" in version_id and len(version_id) > 64:
|
|
model_parts = version_id.split(":")
|
|
if (
|
|
len(model_parts) > 1 and len(model_parts[1]) == 64
|
|
): ## checks if model name has a 64 digit code - e.g. "meta/llama-2-70b-chat:02e509c789964a7ea8736978a43525956ef40397be9033abf9fd2badfe68c9e3"
|
|
request_data["version"] = model_parts[1]
|
|
|
|
return request_data
|
|
|
|
def transform_response(
|
|
self,
|
|
model: str,
|
|
raw_response: httpx.Response,
|
|
model_response: ModelResponse,
|
|
logging_obj: LoggingClass,
|
|
request_data: dict,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
litellm_params: dict,
|
|
encoding: Any,
|
|
api_key: Optional[str] = None,
|
|
json_mode: Optional[bool] = None,
|
|
) -> ModelResponse:
|
|
logging_obj.post_call(
|
|
input=messages,
|
|
api_key=api_key,
|
|
original_response=raw_response.text,
|
|
additional_args={"complete_input_dict": request_data},
|
|
)
|
|
raw_response_json = raw_response.json()
|
|
if raw_response_json.get("status") != "succeeded":
|
|
raise ReplicateError(
|
|
status_code=422,
|
|
message="LiteLLM Error - prediction not succeeded - {}".format(
|
|
raw_response_json
|
|
),
|
|
headers=raw_response.headers,
|
|
)
|
|
outputs = raw_response_json.get("output", [])
|
|
response_str = "".join(outputs)
|
|
if len(response_str) == 0: # edge case, where result from replicate is empty
|
|
response_str = " "
|
|
|
|
## Building RESPONSE OBJECT
|
|
if len(response_str) >= 1:
|
|
model_response.choices[0].message.content = response_str # type: ignore
|
|
|
|
# Calculate usage
|
|
prompt_tokens = token_counter(model=model, messages=messages)
|
|
completion_tokens = token_counter(
|
|
model=model,
|
|
text=response_str,
|
|
count_response_tokens=True,
|
|
)
|
|
model_response.model = "replicate/" + model
|
|
usage = Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
)
|
|
setattr(model_response, "usage", usage)
|
|
|
|
return model_response
|
|
|
|
def get_prediction_url(self, response: httpx.Response) -> str:
|
|
"""
|
|
response json: {
|
|
...,
|
|
"urls":{"cancel":"https://api.replicate.com/v1/predictions/gqsmqmp1pdrj00cknr08dgmvb4/cancel","get":"https://api.replicate.com/v1/predictions/gqsmqmp1pdrj00cknr08dgmvb4","stream":"https://stream-b.svc.rno2.c.replicate.net/v1/streams/eot4gbydowuin4snhncydwxt57dfwgsc3w3snycx5nid7oef7jga"}
|
|
}
|
|
"""
|
|
response_json = response.json()
|
|
prediction_url = response_json.get("urls", {}).get("get")
|
|
if prediction_url is None:
|
|
raise ReplicateError(
|
|
status_code=400,
|
|
message="LiteLLM Error - prediction url is None - {}".format(
|
|
response_json
|
|
),
|
|
headers=response.headers,
|
|
)
|
|
return prediction_url
|
|
|
|
def validate_environment(
|
|
self,
|
|
headers: dict,
|
|
model: str,
|
|
messages: List[AllMessageValues],
|
|
optional_params: dict,
|
|
api_key: Optional[str] = None,
|
|
api_base: Optional[str] = None,
|
|
) -> dict:
|
|
headers = {
|
|
"Authorization": f"Token {api_key}",
|
|
"Content-Type": "application/json",
|
|
}
|
|
return headers
|