litellm-mirror/litellm/llms/infinity/embedding/transformation.py
2025-04-21 18:55:02 -07:00

141 lines
4.5 KiB
Python

from typing import List, Optional, Union
import httpx
from litellm.litellm_core_utils.litellm_logging import Logging as LiteLLMLoggingObj
from litellm.llms.base_llm.chat.transformation import BaseLLMException
from litellm.llms.base_llm.embedding.transformation import BaseEmbeddingConfig
from litellm.secret_managers.main import get_secret_str
from litellm.types.llms.openai import AllEmbeddingInputValues, AllMessageValues
from litellm.types.utils import EmbeddingResponse, Usage
from ..common_utils import InfinityError
class InfinityEmbeddingConfig(BaseEmbeddingConfig):
"""
Reference: https://infinity.modal.michaelfeil.eu/docs
"""
def __init__(self) -> None:
pass
def get_complete_url(
self,
api_base: Optional[str],
api_key: Optional[str],
model: str,
optional_params: dict,
litellm_params: dict,
stream: Optional[bool] = None,
) -> str:
if api_base is None:
raise ValueError("api_base is required for Infinity embeddings")
# Remove trailing slashes and ensure clean base URL
api_base = api_base.rstrip("/")
if not api_base.endswith("/embeddings"):
api_base = f"{api_base}/embeddings"
return api_base
def validate_environment(
self,
headers: dict,
model: str,
messages: List[AllMessageValues],
optional_params: dict,
litellm_params: dict,
api_key: Optional[str] = None,
api_base: Optional[str] = None,
) -> dict:
if api_key is None:
api_key = get_secret_str("INFINITY_API_KEY")
default_headers = {
"Authorization": f"Bearer {api_key}",
"accept": "application/json",
"Content-Type": "application/json",
}
# If 'Authorization' is provided in headers, it overrides the default.
if "Authorization" in headers:
default_headers["Authorization"] = headers["Authorization"]
# Merge other headers, overriding any default ones except Authorization
return {**default_headers, **headers}
def get_supported_openai_params(self, model: str) -> list:
return [
"encoding_format",
"modality",
"dimensions",
]
def map_openai_params(
self,
non_default_params: dict,
optional_params: dict,
model: str,
drop_params: bool,
) -> dict:
"""
Map OpenAI params to Infinity params
Reference: https://infinity.modal.michaelfeil.eu/docs
"""
if "encoding_format" in non_default_params:
optional_params["encoding_format"] = non_default_params["encoding_format"]
if "modality" in non_default_params:
optional_params["modality"] = non_default_params["modality"]
if "dimensions" in non_default_params:
optional_params["output_dimension"] = non_default_params["dimensions"]
return optional_params
def transform_embedding_request(
self,
model: str,
input: AllEmbeddingInputValues,
optional_params: dict,
headers: dict,
) -> dict:
return {
"input": input,
"model": model,
**optional_params,
}
def transform_embedding_response(
self,
model: str,
raw_response: httpx.Response,
model_response: EmbeddingResponse,
logging_obj: LiteLLMLoggingObj,
api_key: Optional[str] = None,
request_data: dict = {},
optional_params: dict = {},
litellm_params: dict = {},
) -> EmbeddingResponse:
try:
raw_response_json = raw_response.json()
except Exception:
raise InfinityError(
message=raw_response.text, status_code=raw_response.status_code
)
# model_response.usage
model_response.model = raw_response_json.get("model")
model_response.data = raw_response_json.get("data")
model_response.object = raw_response_json.get("object")
usage = Usage(
prompt_tokens=raw_response_json.get("usage", {}).get("prompt_tokens", 0),
total_tokens=raw_response_json.get("usage", {}).get("total_tokens", 0),
)
model_response.usage = usage
return model_response
def get_error_class(
self, error_message: str, status_code: int, headers: Union[dict, httpx.Headers]
) -> BaseLLMException:
return InfinityError(
message=error_message, status_code=status_code, headers=headers
)