litellm-mirror/litellm/router.py

226 lines
8 KiB
Python

from typing import Union, List, Dict, Optional
from datetime import datetime
import litellm
class Router:
"""
Example usage:
from litellm import Router
model_list = [{
"model_name": "gpt-3.5-turbo", # openai model name
"litellm_params": { # params for litellm completion/embedding call
"model": "azure/<your-deployment-name>",
"api_key": <your-api-key>,
"api_version": <your-api-version>,
"api_base": <your-api-base>
},
"tpm": <your-model-tpm>, e.g. 240000
"rpm": <your-model-rpm>, e.g. 1800
}]
router = Router(model_list=model_list)
"""
model_names = []
def __init__(self,
model_list: Optional[list]=None,
redis_host: Optional[str] = None,
redis_port: Optional[int] = None,
redis_password: Optional[str] = None) -> None:
if model_list:
self.model_list = model_list
self.model_names = [m["model_name"] for m in model_list]
if redis_host is not None and redis_port is not None and redis_password is not None:
cache_config = {
'type': 'redis',
'host': redis_host,
'port': redis_port,
'password': redis_password
}
else: # use an in-memory cache
cache_config = {
"type": "local"
}
self.cache = litellm.Cache(cache_config) # use Redis for tracking load balancing
litellm.cache = litellm.Cache(**cache_config) # use Redis for caching completion requests
litellm.success_callback = [self.deployment_callback]
def completion(self,
model: str,
messages: List[Dict[str, str]],
is_retry: Optional[bool] = False,
is_fallback: Optional[bool] = False,
is_async: Optional[bool] = False,
**kwargs):
"""
Example usage:
response = router.completion(model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Hey, how's it going?"}]
"""
# pick the one that is available (lowest TPM/RPM)
deployment = self.get_available_deployment(model=model, messages=messages)
data = deployment["litellm_params"]
data["messages"] = messages
# call via litellm.completion()
return litellm.completion(**data)
def text_completion(self,
model: str,
prompt: str,
is_retry: Optional[bool] = False,
is_fallback: Optional[bool] = False,
is_async: Optional[bool] = False,
**kwargs):
messages=[{"role": "user", "content": prompt}]
# pick the one that is available (lowest TPM/RPM)
deployment = self.get_available_deployment(model=model, messages=messages)
data = deployment["litellm_params"]
data["prompt"] = prompt
# call via litellm.completion()
return litellm.text_completion(**data)
def embedding(self,
model: str,
input: Union[str, List],
is_async: Optional[bool] = False,
**kwargs) -> Union[List[float], None]:
# pick the one that is available (lowest TPM/RPM)
deployment = self.get_available_deployment(model=model, input=input)
data = deployment["litellm_params"]
data["input"] = input
# call via litellm.embedding()
return litellm.embedding(**data)
def set_model_list(self, model_list: list):
self.model_list = model_list
def get_model_names(self):
return self.model_names
def deployment_callback(
self,
kwargs, # kwargs to completion
completion_response, # response from completion
start_time, end_time # start/end time
):
"""
Function LiteLLM submits a callback to after a successful
completion. Purpose of this is ti update TPM/RPM usage per model
"""
model_name = kwargs.get('model', None) # i.e. azure/gpt35turbo
total_tokens = completion_response['usage']['total_tokens']
self._set_deployment_usage(model_name, total_tokens)
def get_available_deployment(self,
model: str,
messages: Optional[List[Dict[str, str]]]=None,
input: Optional[Union[str, List]]=None):
"""
Returns a deployment with the lowest TPM/RPM usage.
"""
# get list of potential deployments
potential_deployments = []
for item in self.model_list:
if item["model_name"] == model:
potential_deployments.append(item)
# set first model as current model
deployment = potential_deployments[0]
# get model tpm, rpm limits
tpm = deployment["tpm"]
rpm = deployment["rpm"]
# get deployment current usage
current_tpm, current_rpm = self._get_deployment_usage(deployment_name=deployment["litellm_params"]["model"])
# get encoding
if messages:
token_count = litellm.token_counter(model=deployment["model_name"], messages=messages)
elif input:
if isinstance(input, List):
input_text = "".join(text for text in input)
else:
input_text = input
token_count = litellm.token_counter(model=deployment["model_name"], text=input_text)
# if at model limit, return lowest used
if current_tpm + token_count > tpm or current_rpm + 1 >= rpm:
# -----------------------
# Find lowest used model
# ----------------------
lowest_tpm = float('inf')
deployment = None
# Go through all the models to get tpm, rpm
for item in potential_deployments:
item_tpm, item_rpm = self._get_deployment_usage(deployment_name=item["litellm_params"]["model"])
if item_tpm == 0:
return item
elif item_tpm + token_count > item["tpm"] or item_rpm + 1 >= item["rpm"]:
continue
elif item_tpm < lowest_tpm:
lowest_tpm = item_tpm
deployment = item
# if none, raise exception
if deployment is None:
raise ValueError(f"No models available.")
# return model
return deployment
def _get_deployment_usage(
self,
deployment_name: str
):
# ------------
# Setup values
# ------------
current_minute = datetime.now().strftime("%H-%M")
tpm_key = f'{deployment_name}:tpm:{current_minute}'
rpm_key = f'{deployment_name}:rpm:{current_minute}'
# ------------
# Return usage
# ------------
tpm = self.cache.get_cache(tpm_key)
rpm = self.cache.get_cache(rpm_key)
if tpm is None:
tpm = 0
if rpm is None:
rpm = 0
return int(tpm), int(rpm)
def increment(self, key: str, increment_value: int):
# get value
cached_value = self.cache.get_cache(key)
# update value
cached_value = cached_value + increment_value
# save updated value
self.cache.add_cache(result=cached_value, cache_key=key)
def _set_deployment_usage(
self,
model_name: str,
total_tokens: int
):
# ------------
# Setup values
# ------------
current_minute = datetime.now().strftime("%H-%M")
tpm_key = f'{model_name}:tpm:{current_minute}'
rpm_key = f'{model_name}:rpm:{current_minute}'
# ------------
# Update usage
# ------------
self.increment(tpm_key, total_tokens)
self.increment(rpm_key, 1)