mirror of
https://github.com/BerriAI/litellm.git
synced 2025-04-26 11:14:04 +00:00
* Minor IAM AWS OIDC Improvements (#5246)
* AWS IAM: Temporary tokens are valid across all regions after being issued, so it is wasteful to request one for each region.
* AWS IAM: Include an inline policy, to help reduce misuse of overly permissive IAM roles.
* (test_bedrock_completion.py): Ensure we are testing cross AWS region OIDC flow.
* fix(router.py): log rejected requests
Fixes https://github.com/BerriAI/litellm/issues/5498
* refactor: don't use verbose_logger.exception, if exception is raised
User might already have handling for this. But alerting systems in prod will raise this as an unhandled error.
* fix(datadog.py): support setting datadog source as an env var
Fixes https://github.com/BerriAI/litellm/issues/5508
* docs(logging.md): add dd_source to datadog docs
* fix(proxy_server.py): expose `/customer/list` endpoint for showing all customers
* (bedrock): Fix usage with Cloudflare AI Gateway, and proxies in general. (#5509)
* feat(anthropic.py): support 'cache_control' param for content when it is a string
* Revert "(bedrock): Fix usage with Cloudflare AI Gateway, and proxies in gener…" (#5519)
This reverts commit 3fac0349c2
.
* refactor: ci/cd run again
---------
Co-authored-by: David Manouchehri <david.manouchehri@ai.moda>
599 lines
22 KiB
Python
599 lines
22 KiB
Python
import asyncio
|
|
import json
|
|
import time
|
|
import traceback
|
|
import types
|
|
import uuid
|
|
from copy import deepcopy
|
|
from itertools import chain
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
import aiohttp
|
|
import httpx # type: ignore
|
|
import requests # type: ignore
|
|
|
|
import litellm
|
|
from litellm import verbose_logger
|
|
from litellm.types.utils import ProviderField
|
|
|
|
from .prompt_templates.factory import custom_prompt, prompt_factory
|
|
|
|
|
|
class OllamaError(Exception):
|
|
def __init__(self, status_code, message):
|
|
self.status_code = status_code
|
|
self.message = message
|
|
self.request = httpx.Request(method="POST", url="http://localhost:11434")
|
|
self.response = httpx.Response(status_code=status_code, request=self.request)
|
|
super().__init__(
|
|
self.message
|
|
) # Call the base class constructor with the parameters it needs
|
|
|
|
|
|
class OllamaConfig:
|
|
"""
|
|
Reference: https://github.com/ollama/ollama/blob/main/docs/api.md#parameters
|
|
|
|
The class `OllamaConfig` provides the configuration for the Ollama's API interface. Below are the parameters:
|
|
|
|
- `mirostat` (int): Enable Mirostat sampling for controlling perplexity. Default is 0, 0 = disabled, 1 = Mirostat, 2 = Mirostat 2.0. Example usage: mirostat 0
|
|
|
|
- `mirostat_eta` (float): Influences how quickly the algorithm responds to feedback from the generated text. A lower learning rate will result in slower adjustments, while a higher learning rate will make the algorithm more responsive. Default: 0.1. Example usage: mirostat_eta 0.1
|
|
|
|
- `mirostat_tau` (float): Controls the balance between coherence and diversity of the output. A lower value will result in more focused and coherent text. Default: 5.0. Example usage: mirostat_tau 5.0
|
|
|
|
- `num_ctx` (int): Sets the size of the context window used to generate the next token. Default: 2048. Example usage: num_ctx 4096
|
|
|
|
- `num_gqa` (int): The number of GQA groups in the transformer layer. Required for some models, for example it is 8 for llama2:70b. Example usage: num_gqa 1
|
|
|
|
- `num_gpu` (int): The number of layers to send to the GPU(s). On macOS it defaults to 1 to enable metal support, 0 to disable. Example usage: num_gpu 0
|
|
|
|
- `num_thread` (int): Sets the number of threads to use during computation. By default, Ollama will detect this for optimal performance. It is recommended to set this value to the number of physical CPU cores your system has (as opposed to the logical number of cores). Example usage: num_thread 8
|
|
|
|
- `repeat_last_n` (int): Sets how far back for the model to look back to prevent repetition. Default: 64, 0 = disabled, -1 = num_ctx. Example usage: repeat_last_n 64
|
|
|
|
- `repeat_penalty` (float): Sets how strongly to penalize repetitions. A higher value (e.g., 1.5) will penalize repetitions more strongly, while a lower value (e.g., 0.9) will be more lenient. Default: 1.1. Example usage: repeat_penalty 1.1
|
|
|
|
- `temperature` (float): The temperature of the model. Increasing the temperature will make the model answer more creatively. Default: 0.8. Example usage: temperature 0.7
|
|
|
|
- `seed` (int): Sets the random number seed to use for generation. Setting this to a specific number will make the model generate the same text for the same prompt. Example usage: seed 42
|
|
|
|
- `stop` (string[]): Sets the stop sequences to use. Example usage: stop "AI assistant:"
|
|
|
|
- `tfs_z` (float): Tail free sampling is used to reduce the impact of less probable tokens from the output. A higher value (e.g., 2.0) will reduce the impact more, while a value of 1.0 disables this setting. Default: 1. Example usage: tfs_z 1
|
|
|
|
- `num_predict` (int): Maximum number of tokens to predict when generating text. Default: 128, -1 = infinite generation, -2 = fill context. Example usage: num_predict 42
|
|
|
|
- `top_k` (int): Reduces the probability of generating nonsense. A higher value (e.g. 100) will give more diverse answers, while a lower value (e.g. 10) will be more conservative. Default: 40. Example usage: top_k 40
|
|
|
|
- `top_p` (float): Works together with top-k. A higher value (e.g., 0.95) will lead to more diverse text, while a lower value (e.g., 0.5) will generate more focused and conservative text. Default: 0.9. Example usage: top_p 0.9
|
|
|
|
- `system` (string): system prompt for model (overrides what is defined in the Modelfile)
|
|
|
|
- `template` (string): the full prompt or prompt template (overrides what is defined in the Modelfile)
|
|
"""
|
|
|
|
mirostat: Optional[int] = None
|
|
mirostat_eta: Optional[float] = None
|
|
mirostat_tau: Optional[float] = None
|
|
num_ctx: Optional[int] = None
|
|
num_gqa: Optional[int] = None
|
|
num_gpu: Optional[int] = None
|
|
num_thread: Optional[int] = None
|
|
repeat_last_n: Optional[int] = None
|
|
repeat_penalty: Optional[float] = None
|
|
temperature: Optional[float] = None
|
|
seed: Optional[int] = None
|
|
stop: Optional[list] = (
|
|
None # stop is a list based on this - https://github.com/ollama/ollama/pull/442
|
|
)
|
|
tfs_z: Optional[float] = None
|
|
num_predict: Optional[int] = None
|
|
top_k: Optional[int] = None
|
|
top_p: Optional[float] = None
|
|
system: Optional[str] = None
|
|
template: Optional[str] = None
|
|
|
|
def __init__(
|
|
self,
|
|
mirostat: Optional[int] = None,
|
|
mirostat_eta: Optional[float] = None,
|
|
mirostat_tau: Optional[float] = None,
|
|
num_ctx: Optional[int] = None,
|
|
num_gqa: Optional[int] = None,
|
|
num_gpu: Optional[int] = None,
|
|
num_thread: Optional[int] = None,
|
|
repeat_last_n: Optional[int] = None,
|
|
repeat_penalty: Optional[float] = None,
|
|
temperature: Optional[float] = None,
|
|
seed: Optional[int] = None,
|
|
stop: Optional[list] = None,
|
|
tfs_z: Optional[float] = None,
|
|
num_predict: Optional[int] = None,
|
|
top_k: Optional[int] = None,
|
|
top_p: Optional[float] = None,
|
|
system: Optional[str] = None,
|
|
template: Optional[str] = None,
|
|
) -> None:
|
|
locals_ = locals()
|
|
for key, value in locals_.items():
|
|
if key != "self" and value is not None:
|
|
setattr(self.__class__, key, value)
|
|
|
|
@classmethod
|
|
def get_config(cls):
|
|
return {
|
|
k: v
|
|
for k, v in cls.__dict__.items()
|
|
if not k.startswith("__")
|
|
and not isinstance(
|
|
v,
|
|
(
|
|
types.FunctionType,
|
|
types.BuiltinFunctionType,
|
|
classmethod,
|
|
staticmethod,
|
|
),
|
|
)
|
|
and v is not None
|
|
}
|
|
|
|
def get_required_params(self) -> List[ProviderField]:
|
|
"""For a given provider, return it's required fields with a description"""
|
|
return [
|
|
ProviderField(
|
|
field_name="base_url",
|
|
field_type="string",
|
|
field_description="Your Ollama API Base",
|
|
field_value="http://10.10.11.249:11434",
|
|
)
|
|
]
|
|
|
|
def get_supported_openai_params(
|
|
self,
|
|
):
|
|
return [
|
|
"max_tokens",
|
|
"stream",
|
|
"top_p",
|
|
"temperature",
|
|
"seed",
|
|
"frequency_penalty",
|
|
"stop",
|
|
"response_format",
|
|
]
|
|
|
|
|
|
# ollama wants plain base64 jpeg/png files as images. strip any leading dataURI
|
|
# and convert to jpeg if necessary.
|
|
def _convert_image(image):
|
|
import base64
|
|
import io
|
|
|
|
try:
|
|
from PIL import Image
|
|
except:
|
|
raise Exception(
|
|
"ollama image conversion failed please run `pip install Pillow`"
|
|
)
|
|
|
|
orig = image
|
|
if image.startswith("data:"):
|
|
image = image.split(",")[-1]
|
|
try:
|
|
image_data = Image.open(io.BytesIO(base64.b64decode(image)))
|
|
if image_data.format in ["JPEG", "PNG"]:
|
|
return image
|
|
except:
|
|
return orig
|
|
jpeg_image = io.BytesIO()
|
|
image_data.convert("RGB").save(jpeg_image, "JPEG")
|
|
jpeg_image.seek(0)
|
|
return base64.b64encode(jpeg_image.getvalue()).decode("utf-8")
|
|
|
|
|
|
# ollama implementation
|
|
def get_ollama_response(
|
|
model_response: litellm.ModelResponse,
|
|
api_base="http://localhost:11434",
|
|
model="llama2",
|
|
prompt="Why is the sky blue?",
|
|
optional_params=None,
|
|
logging_obj=None,
|
|
acompletion: bool = False,
|
|
encoding=None,
|
|
):
|
|
if api_base.endswith("/api/generate"):
|
|
url = api_base
|
|
else:
|
|
url = f"{api_base}/api/generate"
|
|
|
|
## Load Config
|
|
config = litellm.OllamaConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in optional_params
|
|
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
stream = optional_params.pop("stream", False)
|
|
format = optional_params.pop("format", None)
|
|
images = optional_params.pop("images", None)
|
|
data = {
|
|
"model": model,
|
|
"prompt": prompt,
|
|
"options": optional_params,
|
|
"stream": stream,
|
|
}
|
|
if format is not None:
|
|
data["format"] = format
|
|
if images is not None:
|
|
data["images"] = [_convert_image(image) for image in images]
|
|
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=None,
|
|
api_key=None,
|
|
additional_args={
|
|
"api_base": url,
|
|
"complete_input_dict": data,
|
|
"headers": {},
|
|
"acompletion": acompletion,
|
|
},
|
|
)
|
|
if acompletion is True:
|
|
if stream == True:
|
|
response = ollama_async_streaming(
|
|
url=url,
|
|
data=data,
|
|
model_response=model_response,
|
|
encoding=encoding,
|
|
logging_obj=logging_obj,
|
|
)
|
|
else:
|
|
response = ollama_acompletion(
|
|
url=url,
|
|
data=data,
|
|
model_response=model_response,
|
|
encoding=encoding,
|
|
logging_obj=logging_obj,
|
|
)
|
|
return response
|
|
elif stream is True:
|
|
return ollama_completion_stream(url=url, data=data, logging_obj=logging_obj)
|
|
|
|
response = requests.post(
|
|
url=f"{url}", json={**data, "stream": stream}, timeout=litellm.request_timeout
|
|
)
|
|
if response.status_code != 200:
|
|
raise OllamaError(status_code=response.status_code, message=response.text)
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=prompt,
|
|
api_key="",
|
|
original_response=response.text,
|
|
additional_args={
|
|
"headers": None,
|
|
"api_base": api_base,
|
|
},
|
|
)
|
|
|
|
response_json = response.json()
|
|
|
|
## RESPONSE OBJECT
|
|
model_response.choices[0].finish_reason = "stop"
|
|
if data.get("format", "") == "json":
|
|
function_call = json.loads(response_json["response"])
|
|
message = litellm.Message(
|
|
content=None,
|
|
tool_calls=[
|
|
{
|
|
"id": f"call_{str(uuid.uuid4())}",
|
|
"function": {
|
|
"name": function_call["name"],
|
|
"arguments": json.dumps(function_call["arguments"]),
|
|
},
|
|
"type": "function",
|
|
}
|
|
],
|
|
)
|
|
model_response.choices[0].message = message # type: ignore
|
|
model_response.choices[0].finish_reason = "tool_calls"
|
|
else:
|
|
model_response.choices[0].message.content = response_json["response"] # type: ignore
|
|
model_response.created = int(time.time())
|
|
model_response.model = "ollama/" + model
|
|
prompt_tokens = response_json.get("prompt_eval_count", len(encoding.encode(prompt, disallowed_special=()))) # type: ignore
|
|
completion_tokens = response_json.get(
|
|
"eval_count", len(response_json.get("message", dict()).get("content", ""))
|
|
)
|
|
setattr(
|
|
model_response,
|
|
"usage",
|
|
litellm.Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
),
|
|
)
|
|
return model_response
|
|
|
|
|
|
def ollama_completion_stream(url, data, logging_obj):
|
|
with httpx.stream(
|
|
url=url, json=data, method="POST", timeout=litellm.request_timeout
|
|
) as response:
|
|
try:
|
|
if response.status_code != 200:
|
|
raise OllamaError(
|
|
status_code=response.status_code, message=response.read()
|
|
)
|
|
|
|
streamwrapper = litellm.CustomStreamWrapper(
|
|
completion_stream=response.iter_lines(),
|
|
model=data["model"],
|
|
custom_llm_provider="ollama",
|
|
logging_obj=logging_obj,
|
|
)
|
|
# If format is JSON, this was a function call
|
|
# Gather all chunks and return the function call as one delta to simplify parsing
|
|
if data.get("format", "") == "json":
|
|
first_chunk = next(streamwrapper)
|
|
response_content = "".join(
|
|
chunk.choices[0].delta.content
|
|
for chunk in chain([first_chunk], streamwrapper)
|
|
if chunk.choices[0].delta.content
|
|
)
|
|
|
|
function_call = json.loads(response_content)
|
|
delta = litellm.utils.Delta(
|
|
content=None,
|
|
tool_calls=[
|
|
{
|
|
"id": f"call_{str(uuid.uuid4())}",
|
|
"function": {
|
|
"name": function_call["name"],
|
|
"arguments": json.dumps(function_call["arguments"]),
|
|
},
|
|
"type": "function",
|
|
}
|
|
],
|
|
)
|
|
model_response = first_chunk
|
|
model_response.choices[0].delta = delta # type: ignore
|
|
model_response.choices[0].finish_reason = "tool_calls"
|
|
yield model_response
|
|
else:
|
|
for transformed_chunk in streamwrapper:
|
|
yield transformed_chunk
|
|
except Exception as e:
|
|
raise e
|
|
|
|
|
|
async def ollama_async_streaming(url, data, model_response, encoding, logging_obj):
|
|
try:
|
|
client = httpx.AsyncClient()
|
|
async with client.stream(
|
|
url=f"{url}", json=data, method="POST", timeout=litellm.request_timeout
|
|
) as response:
|
|
if response.status_code != 200:
|
|
raise OllamaError(
|
|
status_code=response.status_code, message=await response.aread()
|
|
)
|
|
|
|
streamwrapper = litellm.CustomStreamWrapper(
|
|
completion_stream=response.aiter_lines(),
|
|
model=data["model"],
|
|
custom_llm_provider="ollama",
|
|
logging_obj=logging_obj,
|
|
)
|
|
|
|
# If format is JSON, this was a function call
|
|
# Gather all chunks and return the function call as one delta to simplify parsing
|
|
if data.get("format", "") == "json":
|
|
first_chunk = await anext(streamwrapper)
|
|
first_chunk_content = first_chunk.choices[0].delta.content or ""
|
|
response_content = first_chunk_content + "".join(
|
|
[
|
|
chunk.choices[0].delta.content
|
|
async for chunk in streamwrapper
|
|
if chunk.choices[0].delta.content
|
|
]
|
|
)
|
|
function_call = json.loads(response_content)
|
|
delta = litellm.utils.Delta(
|
|
content=None,
|
|
tool_calls=[
|
|
{
|
|
"id": f"call_{str(uuid.uuid4())}",
|
|
"function": {
|
|
"name": function_call["name"],
|
|
"arguments": json.dumps(function_call["arguments"]),
|
|
},
|
|
"type": "function",
|
|
}
|
|
],
|
|
)
|
|
model_response = first_chunk
|
|
model_response.choices[0].delta = delta # type: ignore
|
|
model_response.choices[0].finish_reason = "tool_calls"
|
|
yield model_response
|
|
else:
|
|
async for transformed_chunk in streamwrapper:
|
|
yield transformed_chunk
|
|
except Exception as e:
|
|
raise e # don't use verbose_logger.exception, if exception is raised
|
|
|
|
|
|
async def ollama_acompletion(
|
|
url, data, model_response: litellm.ModelResponse, encoding, logging_obj
|
|
):
|
|
data["stream"] = False
|
|
try:
|
|
timeout = aiohttp.ClientTimeout(total=litellm.request_timeout) # 10 minutes
|
|
async with aiohttp.ClientSession(timeout=timeout) as session:
|
|
resp = await session.post(url, json=data)
|
|
|
|
if resp.status != 200:
|
|
text = await resp.text()
|
|
raise OllamaError(status_code=resp.status, message=text)
|
|
|
|
## LOGGING
|
|
logging_obj.post_call(
|
|
input=data["prompt"],
|
|
api_key="",
|
|
original_response=resp.text,
|
|
additional_args={
|
|
"headers": None,
|
|
"api_base": url,
|
|
},
|
|
)
|
|
|
|
response_json = await resp.json()
|
|
## RESPONSE OBJECT
|
|
model_response.choices[0].finish_reason = "stop"
|
|
if data.get("format", "") == "json":
|
|
function_call = json.loads(response_json["response"])
|
|
message = litellm.Message(
|
|
content=None,
|
|
tool_calls=[
|
|
{
|
|
"id": f"call_{str(uuid.uuid4())}",
|
|
"function": {
|
|
"name": function_call.get(
|
|
"name", function_call.get("function", None)
|
|
),
|
|
"arguments": json.dumps(function_call["arguments"]),
|
|
},
|
|
"type": "function",
|
|
}
|
|
],
|
|
)
|
|
model_response.choices[0].message = message # type: ignore
|
|
model_response.choices[0].finish_reason = "tool_calls"
|
|
else:
|
|
model_response.choices[0].message.content = response_json["response"] # type: ignore
|
|
model_response.created = int(time.time())
|
|
model_response.model = "ollama/" + data["model"]
|
|
prompt_tokens = response_json.get("prompt_eval_count", len(encoding.encode(data["prompt"], disallowed_special=()))) # type: ignore
|
|
completion_tokens = response_json.get(
|
|
"eval_count",
|
|
len(response_json.get("message", dict()).get("content", "")),
|
|
)
|
|
setattr(
|
|
model_response,
|
|
"usage",
|
|
litellm.Usage(
|
|
prompt_tokens=prompt_tokens,
|
|
completion_tokens=completion_tokens,
|
|
total_tokens=prompt_tokens + completion_tokens,
|
|
),
|
|
)
|
|
return model_response
|
|
except Exception as e:
|
|
raise e # don't use verbose_logger.exception, if exception is raised
|
|
|
|
|
|
async def ollama_aembeddings(
|
|
api_base: str,
|
|
model: str,
|
|
prompts: List[str],
|
|
model_response: litellm.EmbeddingResponse,
|
|
optional_params: dict,
|
|
logging_obj=None,
|
|
encoding=None,
|
|
):
|
|
if api_base.endswith("/api/embed"):
|
|
url = api_base
|
|
else:
|
|
url = f"{api_base}/api/embed"
|
|
|
|
## Load Config
|
|
config = litellm.OllamaConfig.get_config()
|
|
for k, v in config.items():
|
|
if (
|
|
k not in optional_params
|
|
): # completion(top_k=3) > cohere_config(top_k=3) <- allows for dynamic variables to be passed in
|
|
optional_params[k] = v
|
|
|
|
data: Dict[str, Any] = {"model": model, "input": prompts}
|
|
special_optional_params = ["truncate", "options", "keep_alive"]
|
|
|
|
for k, v in optional_params.items():
|
|
if k in special_optional_params:
|
|
data[k] = v
|
|
else:
|
|
# Ensure "options" is a dictionary before updating it
|
|
data.setdefault("options", {})
|
|
if isinstance(data["options"], dict):
|
|
data["options"].update({k: v})
|
|
total_input_tokens = 0
|
|
output_data = []
|
|
|
|
timeout = aiohttp.ClientTimeout(total=litellm.request_timeout) # 10 minutes
|
|
async with aiohttp.ClientSession(timeout=timeout) as session:
|
|
## LOGGING
|
|
logging_obj.pre_call(
|
|
input=None,
|
|
api_key=None,
|
|
additional_args={
|
|
"api_base": url,
|
|
"complete_input_dict": data,
|
|
"headers": {},
|
|
},
|
|
)
|
|
|
|
response = await session.post(url, json=data)
|
|
|
|
if response.status != 200:
|
|
text = await response.text()
|
|
raise OllamaError(status_code=response.status, message=text)
|
|
|
|
response_json = await response.json()
|
|
|
|
embeddings: List[List[float]] = response_json["embeddings"]
|
|
for idx, emb in enumerate(embeddings):
|
|
output_data.append({"object": "embedding", "index": idx, "embedding": emb})
|
|
|
|
input_tokens = response_json.get("prompt_eval_count") or len(
|
|
encoding.encode("".join(prompt for prompt in prompts))
|
|
)
|
|
total_input_tokens += input_tokens
|
|
|
|
model_response.object = "list"
|
|
model_response.data = output_data
|
|
model_response.model = "ollama/" + model
|
|
setattr(
|
|
model_response,
|
|
"usage",
|
|
litellm.Usage(
|
|
**{
|
|
"prompt_tokens": total_input_tokens,
|
|
"total_tokens": total_input_tokens,
|
|
}
|
|
),
|
|
)
|
|
return model_response
|
|
|
|
|
|
def ollama_embeddings(
|
|
api_base: str,
|
|
model: str,
|
|
prompts: list,
|
|
optional_params=None,
|
|
logging_obj=None,
|
|
model_response=None,
|
|
encoding=None,
|
|
):
|
|
return asyncio.run(
|
|
ollama_aembeddings(
|
|
api_base=api_base,
|
|
model=model,
|
|
prompts=prompts,
|
|
model_response=model_response,
|
|
optional_params=optional_params,
|
|
logging_obj=logging_obj,
|
|
encoding=encoding,
|
|
)
|
|
)
|